A Transfer Learning Approach for Bipolar Disease Detection
Keywords:
Bipolar Disorder, BiLSTM, Deep Learning, Resnet, OptimizationAbstract
Bipolar illness is a complicated mental health issue that affects a large section of the world. Effective bipolar illness therapy requires early and precise diagnosis. This work proposes a unique transfer learning strategy for bipolar disorder identification using many modules to improve prediction accuracy. The first module trains a CNN, BiLSTM, and RBF. Deep learning architectures help this module extract relevant characteristics from raw input data. The second module uses a DNN for feature selection to enhance feature representation. The DNN model eliminates superfluous or duplicated data by identifying the most important bipolar disorder diagnosis characteristics. In the third module, transfer learning uses a pre-trained model. Pre-trained models improve bipolar illness prediction by using learnt representations. Transfer learning is modified to include domain knowledge from related activities or datasets. The fourth module implements a RESNET Classification module. RESNET excels in picture categorization; therefore we use it to forecast bipolar disorder by capturing complicated data patterns and correlations. In the fifth module, SGD optimizes the model. By repeatedly adjusting parameters based on a portion of training data, SGD speeds convergence and improves accuracy. Finally, we optimize Levy Flight-based Fruit fly optimization to fine-tune model parameters. This technique optimizes hyper parameters including learning rate, batch size, and regularization for optimal bipolar illness identification.
Downloads
References
Antosik-Wójcińska, A. Z., Dominiak, M., Chojnacka, M., Kaczmarek-Majer, K., Opara, K. R., Radziszewska, W., … Święcicki, Ł. (2020). Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling. International Journal of Medical Informatics, 104131. doi:10.1016/j.ijmedinf.2020.104131
Batchvarov, V. N., & Behr, E. R. (2015). Computed bipolar precordial leads for improved P wave detection. Journal of Electrocardiology, 48(2), 188–189. doi:10.1016/j.jelectrocard.2014.12.009
Constantinou, L., Kyriacou, P. A., & Triantis, I. F. (2017). Towards an optimized tetrapolar electrical impedance lithium detection probe for bipolar disorder: A simulation study. 2017 IEEE SENSORS. doi:10.1109/icsens.2017.8234225
Daus, H., Kislicyn, N., Heuer, S., & Backenstrass, M. (2018). Disease management apps and technical assistance systems for bipolar disorder: Investigating the patients´ point of view. Journal of Affective Disorders, 229, 351–357. doi:10.1016/j.jad.2017.12.059
Delvecchio, G., Pigoni, A., Altamura, A. C., & Brambilla, P. (2018). Cognitive and neural basis of hypomania: Perspectives for early detection of bipolar disorder. Bipolar Disorder Vulnerability, 195–227. doi:10.1016/b978-0-12-812347-8.00010-5
Ding, S.-N., Wang, X.-Y., & Lu, W.-X. (2019). Switches-controlled bipolar electrode electrochemiluminescence arrays for high-throughput detection of cancer biomarkers. Journal of Electroanalytical Chemistry, 844, 99–104. doi:10.1016/j.jelechem.2019.05.021
Fitriati, D., Maspiyanti, F., & Devianty, F. A. (2019). Early Detection Application of Bipolar Disorders Using Backpropagation Algorithm. 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). doi:10.23919/eecsi48112.2019.8977102
Jadhav, R., Chellwani, V., Deshmukh, S., & Sachdev, H. (2019). Mental Disorder Detection : Bipolar Disorder Scrutinization Using Machine Learning. 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). doi:10.1109/confluence.2019.8776913
Kessing, L. V., Ziersen, S. C., Andersen, P. K., & Vinberg, M. (2021). A nation-wide population-based longitudinal study mapping physical diseases in patients with bipolar disorder and their siblings. Journal of Affective Disorders, 282, 18–25. doi:10.1016/j.jad.2020.12.072
Kibbi, N., Totonchy, M., Suozzi, K. C., Ko, C. J., & Odell, I. D. (2018). A case of subungual tumors of incontinentia pigmenti: A rare manifestation and association with bipolar disease. JAAD Case Reports, 4(7), 737–741. doi:10.1016/j.jdcr.2018.03.018
Li, Z., Li, W., Wei, Y., Gui, G., Zhang, R., Liu, H., … Jiang, Y. (2021). Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls. Computerized Medical Imaging and Graphics, 89, 101882. doi:10.1016/j.compmedimag.2021.101882
Librenza-Garcia, D., Kotzian, B. J., Yang, J., Mwangi, B., Cao, B., Pereira Lima, L. N., … Passos, I. C. (2017). The impact of machine learning techniques in the study of bipolar disorder: A systematic review. Neuroscience & Biobehavioral Reviews, 80, 538–554. doi:10.1016/j.neubiorev.2017.07.004
Passos, I. C., Ballester, P., Barros, R. C., Librenza‐Garcia, D., Mwangi, B., Birmaher, B., … Kapczinski, F. (2019). Machine learning and big data analytics in bipolar disorder: A Position paper from the International Society for Bipolar Disorders (ISBD) Big Data Task Force. Bipolar Disorders. doi:10.1111/bdi.12828
Perez Arribas, I., Goodwin, G. M., Geddes, J. R., Lyons, T., & Saunders, K. E. A. (2018). A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0334-0
Ren, Z., Han, J., Cummins, N., Kong, Q., Plumbley, M. D., & Schuller, B. W. (2019). Multi-instance Learning for Bipolar Disorder Diagnosis using Weakly Labelled Speech Data. Proceedings of the 9th International Conference on Digital Public Health - DPH2019. doi:10.1145/3357729.3357743
Sawalha, J., Cao, L., Chen, J., Selvitella, A., Liu, Y., Yang, C., … Cao, B. (2020). Individualized identification of first-episode bipolar disorder using machine learning and cognitive tests. Journal of Affective Disorders. doi:10.1016/j.jad.2020.12.046
Sonkurt, H. O., Altınöz, A. E., Çimen, E., Köşger, F., & Öztürk, G. (2020). The role of cognitive functions in the diagnosis of bipolar disorder: A machine learning model. International Journal of Medical Informatics, 104311. doi:10.1016/j.ijmedinf.2020.104311
Tomasik, J., Han, S. Y. S., Barton-Owen, G., Mirea, D.-M., Martin-Key, N. A., Rustogi, N., … Bahn, S. (2021). A machine learning algorithm to differentiate bipolar disorder from major depressive disorder using an online mental health questionnaire and blood biomarker data. Translational Psychiatry, 11(1). doi:10.1038/s41398-020-01181-x
Vasu, V., & Indiramma, M. (2020). A Survey on Bipolar Disorder Classification Methodologies using Machine Learning. 2020 International Conference on Smart Electronics and Communication (ICOSEC). doi:10.1109/icosec49089.2020.9215334
Wollenhaupt-Aguiar, B., Librenza-Garcia, D., Bristot, G., Przybylski, L., Stertz, L., Kubiachi Burque, R., … Kapczinski, F. (2019). Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach. Australian & New Zealand Journal of Psychiatry, 54(4), 393–401. doi:10.1177/0004867419888027
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.