ROISegNet: A Deep Learning Framework for Automatic Segmentation of Region of Interest from Breast Thermogram Imagery

Authors

  • Preethi Veerlapalli Kakali Das,

Keywords:

Deep Learning, Region of Interest Segmentation, Breast Cancer, Atrous Convolution, Sematic Image Segmentation

Abstract

Among the top causes of mortality for women worldwide is breast cancer. With the emergence of non-invasive imaging technology known as breast thermography, it is possible to know abnormalities in breast that may lead to breast cancer over a period of time. Therefore, early detection of breast cancer probability could save lives and get rid of such cancer altogether. At the same time, Artificial Intelligence (AI) has become a technology innovation for solving problems in healthcare domain. In this context, it is indispensable to exploit AI enabled methods such as deep learning and breast thermography for early detection of breast cancer. However, the research is this paper is confined to breast Region of Interest (ROI) segmentation using deep learning to facilitate mechanisms for breast cancer screening later. Existing deep learning model named atrous convolution is found suitable for semantic segmentation. Our deep learning system, ROISegNet, was suggested for automated segmentation of ROI from breast thermogram imagery. Our framework uses atrous convolution as part of encoder and designs decoder module for leveraging efficiency in semantic segmentation. We proposed an algorithm named Learning based Breast ROI Segmentation (LbBROIS) to realize our framework. Our empirical study made with the benchmark dataset DMR-IR revealed with, ROISegNet outperforms existing models such as VGG19, ResNet50, InceptionV3 and Atrous Convolution with highest accuracy 98.63%.

Downloads

Download data is not yet available.

References

R. Karthiga and K. Narasimhan; (2021). Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image . Pattern Analysis and Applications. http://doi:10.1007/s10044-021-00963-3

Samir S. Yadav and Shivajirao M. Jadhav. (2020). Thermal infrared imaging based breast cancer diagnosis using machine learning techniques. Springer. 81, pp.1-19. https://doi.org/10.1007/s11042-020-09600-3

Raquel Sánchez-Cauce; Jorge Pérez-Martín and Manuel Luque; (2021). Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data . Computer Methods and Programs in Biomedicine. http://doi:10.1016/j.cmpb.2021.106045

Mariana Macedo; Maira Santana; Wellington P. dos Santos; Ronaldo Menezes and Carmelo Bastos-Filho; (2021). Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection . Applied Soft Computing. http://doi:10.1016/j.asoc.2021.107533

Barsha Abhisheka, Saroj Kumar Biswas and Biswajit Purkayastha. (2023). A comprehensive review on breast cancer detection, classification and segmentation using deep learning. Springer. 30, pp.1-30. https://doi.org/10.1007/s11831-023-09968-z

DENNIES TSIETSO, ABID YAHYA, RAVI SAMIKANNU, MUHAMMAD USMAN TARIQ, MUHAMMAD BABAR, BASIT QURESHI AND ANIS KOUBAA. (2023). Multi-Input Deep Learning Approach for Breast Cancer Screening Using Thermal Infrared Imaging and Clinical Data. IEEE. 11, pp.52101 - 52116. http://DOI:10.1109/ACCESS.2023.3280422

Venkatesan Rajinikanth; Seifedine Kadry; David Taniar; Robertas Damasevicius and Hafiz Tayyab Rauf; (2021). Breast-Cancer Detection using Thermal Images with Marine-Predators-Algorithm Selected Features . 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). http://doi:10.1109/icbsii51839.2021.9445166

Houssein, Essam H.; Emam, Marwa M.; Ali, Abdelmgeid A. and Suganthan, Ponnuthurai Nagaratnam (2020). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 114161–. http://doi:10.1016/j.eswa.2020.114161

Aigerim Mashekova, Yong Zhao, Eddie Y.K. Ng, Vasilios Zarikas, Sai Cheong Fok and Olzhas Mukhmetov. (2022). Early detection of the breast cancer using infrared technology – A comprehensive review. Elsevier. 27, pp.1-18. https://doi.org/10.1016/j.tsep.2021.101142

Resmini, R., Faria da Silva, L., Medeiros, P. R. T., Araujo, A. S., Muchaluat-Saade, D. C., & Conci, A. (2021). A hybrid methodology for breast screening and cancer diagnosis using thermography. Computers in Biology and Medicine, 135, 104553. http://doi:10.1016/j.compbiomed.2021.104

Houssein, E. H., Emam, M. M., & Ali, A. A. (2021). An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Systems with Applications, 185, 115651. http://doi:10.1016/j.eswa.2021.115651

Lakshman K; Siddharth B. Dabhade; Y. S. Rode; Karan Dabhade; S. Deshmukh and Ranjan Maheshwari; (2021). Identification of Breast Cancer from Thermal Imaging using SVM and Random Forest Method . 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). http://doi:10.1109/icoei51242.2021.9452809

Zeiser, F. A., da Costa, C. A., Ramos, G. de O., Bohn, H. C., Santos, I., & Roehe, A. V. (2021). DeepBatch: A hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images. Expert Systems with Applications, 185, 115586. http://doi:10.1016/j.eswa.2021.115586

Zahra Rezaei; (2021). A review on image-based approaches for breast cancer detection, segmentation, and classification . Expert Systems with Applications. http://doi:10.1016/j.eswa.2021.115204

Liu, Z., Ni, S., Yang, C., Sun, W., Huang, D., Su, H., … Qin, N. (2021). Axillary lymph node metastasis prediction by contrast-enhanced computed tomography images for breast cancer patients based on deep learning. Computers in Biology and Medicine, 136, 104715. http://doi:10.1016/j.compbiomed.2021.104715

Krithiga, R. and Geetha, P. (2020). Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review. Archives of Computational Methods in Engineering. http://doi:10.1007/s11831-020-09470-w

Sharma, R., Sharma, J. B., Maheshwari, R., & Baleanu, D. (2021). Early anomaly prediction in breast thermogram by hybrid model consisting of superpixel segmentation, sparse feature descriptors and extreme learning machine classifier. Biomedical Signal Processing and Control, 70, 103011. http://doi:10.1016/j.bspc.2021.103011

Jun Bai; Russell Posner; Tianyu Wang; Clifford Yang and Sheida Nabavi; (2021). Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review . Medical Image Analysis. http://doi:10.1016/j.media.2021.102049

Bardia Yousefi; Hossein Memarzadeh Sharifipour and Xavier P. V. Maldague; (2021). A Diagnostic Biomarker for Breast Cancer Screening via Hilbert Embedded Deep Low-Rank Matrix Approximation . IEEE Transactions on Instrumentation and Measurement. http://doi:10.1109/tim.2021.3085956

Chen Chen; Yong Wang; Jianwei Niu; Xuefeng Liu; Qingfeng Li and Xuantong Gong; (2021). Domain Knowledge Powered Deep Learning for Breast Cancer Diagnosis Based on Contrast-Enhanced Ultrasound Videos . IEEE Transactions on Medical Imaging. http://doi:10.1109/tmi.2021.3078370

Tariq, Mehreen; Iqbal, Sajid; Ayesha, Hareem; Abbas, Ishaq; Ahmad, Khawaja Tehseen and Niazi, Muhammad Farooq Khan (2020). Medical Image based Breast Cancer Diagnosis: State of the Art and Future Directions. Expert Systems with Applications, 114095–. http://doi:10.1016/j.eswa.2020.114095

Nienke Bakx, Dorien Rijkaart, Maurice van der Sangen, Jacqueline Theuws , Peter-Paul van der Toorn, An-Sofie Verrijssen, Jorien van der Leer, Joline Mutsaers, Th´er`ese van Nunen, Marjon Reinders, Inge Schuengel, Julia Smits, Els Hagelaar, Dave van Gruijthuijsen, Johanna Bluemink and Coen Hurkmans. (2023). Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer. Elsevier. 26, pp.1-6. https://doi.org/10.1016/j.tipsro.2023.100211

Rahul Kumar Yadav, Pardeep Singh and Poonam Kashtriya. (2023). Diagnosis of Breast Cancer using Machine Learning Techniques -A Survey. Elsevier. 218, pp.1434-1443. https://doi.org/10.1016/j.procs.2023.01.122

Chang Li and Xi Lu; (2021). Computer-Aided Detection Breast Cancer in Whole Slide Image . 2021 International Conference on Computer, Control and Robotics (ICCCR). http://doi:10.1109/icccr49711.2021.9349391

Seifedine Kadry; Robertas Damasevicius; David Taniar; Venkatesan Rajinikanth and Isah A. Lawal; (2021). Extraction of Tumour in Breast MRI using Joint Thresholding and Segmentation – A Study . 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII). http://doi:10.1109/icbsii51839.2021.9445152

Yun Peng, Wei Tang and Xiaoyu Peng. (2023). The study of ultrasonography based on deep learning in breast cancer. Elsevier. 16(4), pp.1-7. https://doi.org/10.1016/j.jrras.2023.100679

Sruthi Krishna and Betsy George; (2021). An affordable solution for the recognition of abnormality in breast thermogram . Multimedia Tools and Applications. http://doi:10.1007/s11042-021-11082-w

Jessiane M. S. Pereira; Maíra A. Santana; Juliana C. Gomes; Valter Augusto de Freitas Barbosa; Mêuser Jorge Silva Valença; Sidney Marlon Lopes de Lima and Wellington Pinheiro dos Santos; (2021). Feature selection based on dialectics to support breast cancer diagnosis using thermographic images . Research on Biomedical Engineering. http://doi:10.1007/s42600-021-00158-z

Meenalochini, G. and Ramkumar, S. (2020). Survey of machine learning algorithms for breast cancer detection using mammogram images. Materials Today: Proceedings, S2214785320364257–. http://doi:10.1016/j.matpr.2020.08.543

Mishra, S., Prakash, A., Roy, S. K., Sharan, P., & Mathur, N. (2020). Breast Cancer Detection using Thermal Images and Deep Learning. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). doi:10.23919/indiacom49435.2020.9083722

Ibrahim, Abdelhameed; Mohammed, Shaimaa; Ali, Hesham Arafat and Hussein, Sherif E. (2020). Breast Cancer Segmentation from Thermal Images Based on Chaotic Salp Swarm Algorithm. IEEE Access, 1–1. http://doi:10.1109/ACCESS.2020.3007336

Kakileti, Siva Teja; Manjunath, Geetha and Madhu, Himanshu J. (2019). 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Cascaded CNN for View Independent Breast Segmentation in Thermal Images. 6294–6297. http://doi:10.1109/embc.2019.8856628

Husaini, Mohammed Abdulla Salim Al; Habaebi, Mohamed Hadi; Hameed, Shihab A.; Islam, Md. Rafiqul and Gunawan, Teddy Surya (2020). A Systematic Review of Breast Cancer Detection Using Thermography and Neural Networks. IEEE Access, 8, 208922–208937. http://doi:10.1109/ACCESS.2020.3038817

Raghavendra, U; Gudigar, Anjan; Rao, Tejaswi N; Ciaccio, Edward J; Ng, E.Y.K. and Rajendra Acharya, U. (2019). Computer aided diagnosis for the identification of breast cancer using thermogram images: A comprehensive review. Infrared Physics & Technology, 103041–. http://doi:10.1016/j.infrared.2019.103041

Farooq, Muhammad Ali and Corcoran, Peter (2020). 31st Irish Signals and Systems Conference (ISSC) - Infrared Imaging for Human Thermography and Breast Tumor Classification using Thermal Images. 1–6. http://doi:10.1109/ISSC49989.2020.9180164

Singh, Deepika and Singh, Ashutosh Kumar (2020). Role of image thermography in early breast cancer detection- Past, present and future. Computer Methods and Programs in Biomedicine, 183, 105074–. http://doi:10.1016/j.cmpb.2019.105074

Kakileti, Siva Teja; Madhu, Himanshu J.; Manjunath, Geetha; Wee, Leonard; Dekker, Andre and Sampangi, Sudhakar (2020). Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine, 105, 101854–. http://doi:10.1016/j.artmed.2020.101854

Sánchez-Ruiz, Daniel; Olmos-Pineda, Ivan and Olvera-López, J. Arturo (2020). Automatic region of interest segmentation for breast thermogram image classification. Pattern Recognition Letters, 135, 72–81. http://doi:10.1016/j.patrec.2020.03.025

Mahmood, Tariq; Li, Jianqiang; Pei, Yan; Akhtar, Faheem; Imran, Azhar and Rehman, Khalil ur (2020). A Brief Survey on Breast Cancer Diagnostic with Deep Learning Schemes Using Multi-Image Modalities. IEEE Access, 1–1. http://doi:10.1109/ACCESS.2020.3021343

P, Gomathi; C, Muniraj and PS, Periasamy (2020). BREAST THERMOGRAPHY BASED UNSUPERVISED ANISOTROPIC- FEATURE TRANSFORMATION METHOD FOR AUTOMATIC BREAST CANCER DETECTION. Microprocessors and Microsystems, 103137–. http://doi:10.1016/j.micpro.2020.103137

DMR - Database for Mastology Research. Retrieved from http://visual.ic.uff.br/dmi/

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.

Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.

M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets: TimeFrequency Methods and Phase Space, pages 289–297. 1989.

Giusti, D. Ciresan, J. Masci, L. Gambardella, and J. Schmidhuber. Fast image scanning with deep max-pooling convolutional neural networks. In ICIP, 2013.

L.-C.Chen,G.Papandreou,I.Kokkinos,K.Murphy,andA.L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915, 2016.

Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of computation, 31(138):333–390, 1977.

D. Terzopoulos. Image analysis using multigrid relaxation methods. TPAMI, (2):129–139, 1986.

K. Grauman and T. Darrell. The pyramid match kernel: Discriminativeclassificationwithsetsofimagefeatures. InICCV, 2005.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatialpyramidmatchingforrecognizingnaturalscene categories. In CVPR, 2006.

W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better. arXiv:1506.04579, 2015.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.

Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017) [56] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. (2015).

Sandeep Wadekar, Dileep Kumar Singh. (2023). A modified convolutional neural network framework for categorizing lung cell histopathological image based on residual n. Elsevier. 4, pp.1-8. [Online]. Available at: https://doi.org/10.1016/j.health.2023.100224

MYASAR MUNDHER ADNAN, MOHD SHAFRY MOHD RAHIM, AMJAD REHMAN KHAN. (2023). Automated Image Annotation with Novel Features Based on Deep ResNet50-SLT. IEEE. 11, pp.40258-40277. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2023.3266296.

Liu, Zhiyong; Yang, Chuan; Huang, Jun; Liu, Shaopeng; Zhuo, Yumin; Lu, Xu (2021). Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Generation Computer Systems, 114, pp.358–367. doi:10.1016/j.future.2020.08.015

Downloads

Published

24.03.2024

How to Cite

Kakali Das, P. V. . (2024). ROISegNet: A Deep Learning Framework for Automatic Segmentation of Region of Interest from Breast Thermogram Imagery. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 2248–2261. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5693

Issue

Section

Research Article