Unlocking the Potential of Quantum Machine Learning: A Paradigm Shift in Optimization

Authors

  • Saurabh Choudhary, Rajanish Kumar Jain, Sachin Malhotra, Nitin Rastogi, Midhunchakkaravarthy

Keywords:

Quantum Machine Learning; Optimization; Quantum Computing; Quantum Optimization;

Abstract

Quantum Machine Learning (QML) is an exciting new field that combines quantum computing and machine learning, revolutionizing the way we develop systems. This article explores the significant role QML plays in traditional communication and quantum optimization methods. We delve into the fundamentals of quantum computing, compare classical methods with quantum optimization, and examine QML algorithms to illustrate their applications across different industries.

1 Krishna Engineering College, Ghaziabad, India; email – saurabh.chy75@gmail.com

3 Krishna Engineering College, Ghaziabad, India; email – rajneesh8m@gmail.com

2 Krishna Engineering College, Ghaziabad, India; email – sachin.malhotra2312@gmail.c

4 Athenaeum Jupiter Pvt Ltd, Gurugram, India; email – nitin@athenaeducation.co.in

5 Lincoln University College, Malaysia; email – midhun.research@gmail.com

*Correspondence: Sachin Malhotra

HoD, Department of Computer Science & Engineering Krishna Engineering College, Mohan Nagar,Ghaziabad, India

Zip Code - 201007

Email: sachin.malhtra2312@gmail.com

Phone: +91 9911217804

 

With a solid understanding of quantum mechanics and machine learning concepts, our research breaks down optimization techniques, highlighting their advantages and disadvantages compared to quantum methods. We introduce QML algorithms, such as quantum neural networks and quantum approximate optimization algorithms, and provide explanations of their workings.

Moving beyond theory, we demonstrate how QML can effectively address real-world optimization problems in finance, transportation, healthcare, and other domains. Our examples showcase how QML can enhance performance, reduce costs, and foster innovation. Despite its potential, the integration of QML into daily business faces challenges. We explore issues such as hardware limitations, error correction, scalability, and noise reduction. Additionally, we present potential solutions and suggest future research directions to overcome these challenges.

In summary, our research underscores that QML, as a fusion of classical and quantum optimization, is poised to transform business practices and drive innovation. As quantum hardware advances and our understanding of quantum algorithms deepens, the game-changing capabilities of QML will revolutionize our approach to complex development problems, propelling progress and innovation across various industries.

Downloads

Download data is not yet available.

References

Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern Physics, 90(1), 015002. https://doi.org/10.1103/RevModPhys.90.015002.

Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Zalcman, A. (2020). Hartree-Fock on a superconducting qubit quantum computer. Science, 369(6507), 1084-1089. DOI: 10.1126/science.abb9811

Baek, H., Yun, W. J., & Kim, J. (2022). Scalable Quantum Convolutional Neural Networks. arXiv preprint arXiv:2209.12372.

Biamonte, J., Wittek, P., Pancotti, N. et al. Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474

Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., ... & Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6), 595-600.

Boixo, S., Rønnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M., & Troyer, M. (2014). Quantum annealing with more than one hundred qubits. Nature Physics, 10, 218. https://doi.org/10.48550/arXiv.1304.4595.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Bravyi, S., & Kitaev, A. (2005). Universal Quantum Computation with Ideal Clifford Gates and Noisy Ancillas. Physical Review A, 71(2), 022316. https://doi.org/10.1103/PhysRevA.71.022316

Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., ... Aspuru-Guzik, A. (2019). Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, 119(19), 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803

Carrasquilla, J. (2020). Machine Learning for Quantum Matter. arXiv preprint arXiv:2003.11040. https://doi.org/10.48550/arXiv.2003.11040

Charbon, E., Sebastiano, F., Vladimirescu, A., Homulle, H., Visser, S., Song, L., & Incandela, R. M. (2016, December). Cryo-CMOS for quantum computing. In 2016 IEEE International Electron Devices Meeting (IEDM) (pp. 13-5). IEEE.

Cho, C.-H., Chen, C.-Y., Chen, K.-C., Huang, T.-W., Hsu, M.-C., Cao, N.-P., Zeng, B., Tan, S.-G., & Chang, C.-R. (2021). Quantum computation: Algorithms and applications. Chinese Journal of Physics, 72, 248-269. https://doi.org/10.1016/j.cjph.2021.05.001

Chow, J., Dial, O., & Gambetta, J. (2021, November 16). IBM Quantum breaks the 100-qubit processor barrier. Quantum Systems.

Consul-Pacareu, S., Montaño, R., Rodriguez-Fernandez, K., Corretgé, À., Vilella-Moreno, E., Casado-Faulí, D., & Atchade-Adelomou, P. (2023). Quantum Machine Learning hyperparameter search. arXiv preprint arXiv:2302.10298. https://doi.org/10.48550/arXiv.2302.10298

Corney, A. (1981). Principles of Quantum Electronics. Physics Bulletin, 32(3), 82. https://doi.org/10.1088/0031-9112/32/3/042

Dantzig, G. B. (1963). Linear programming and extensions. Princeton University Press.

Das Sarma, S., Deng, D. L., & Duan, L. M. (2019). Machine learning meets quantum physics. arXiv preprint arXiv:1903.03516. https://doi.org/10.48550/arXiv.1903.03516

Debnath, S., Linke, N., Figgatt, C. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016). https://doi.org/10.1038/nature18648

Debnath, S., Linke, N., Figgatt, C. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016). https://doi.org/10.1038/nature18648

Devoret, M. H., Wallraff, A., & Martinis, J. M. (2004). Superconducting Qubits: A Short Review. arXiv:cond-mat/0411174 [cond-mat.mes-hall]. https://doi.org/10.48550/arXiv.cond-mat/0411174

Du, Y., Hsieh, M.-H., Liu, T., & Tao, D. (2019). The Expressive Power of Parameterized Quantum Circuits. Phys. Rev. Research, 2(3), 033125. https://doi.org/10.1103/PhysRevResearch.2.033125

D-Wave Systems Inc. (2021). Multiverse Computing: Optimizing Financial Portfolios with Quantum Computing. https://www.dwavesys.com/media/5qahck2o/multiverse_case_study_v8.pdf

Ezzell, N., Pokharel, B., Tewala, L., Quiroz, G., & Lidar, D. A. (2023). Dynamical decoupling for superconducting qubits: A performance survey. Physical Review Applied, 20, 064027. https://doi.org/10.1103/PhysRevApplied.20.064027

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A Quantum Approximate Optimization Algorithm. arXiv:1411.4028. https://doi.org/10.48550/arXiv.1411.4028

Farhi, E., Goldstone, J., Gutmann, S., & Neven, H. (2017). Quantum Algorithms for Fixed Qubit Architectures. arXiv:1703.06199. https://doi.org/10.48550/arXiv.1703.06199

Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3), 032324. DOI: 10.1103/PhysRevA.86.032324

Fowler, Austin & Wang, David & Hollenberg, Lloyd. (2010). Surface code quantum error correction incorporating accurate error propagation. Quantum information & computation. 11. 10.26421/QIC11.1-2-2.

Gambetta, J. M., Chow, J. M., & Steffen, M. (2017). Building logical qubits in a superconducting quantum computing system. npj quantum information, 3(1), 2.

Gao, L., & Guan, L. (2023). Interpretability of Machine Learning: Recent Advances and Future Prospects. IEEE Multimedia. Advance online publication.

Gil, P., Su, Y., & Beauregard, G. (2019). Quantum advantage for machine learning. In Proceedings of the 36th International Conference on Machine Learning (pp. 2967-2976). PMLR.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Gottesman, D. (2014). Fault-Tolerant Quantum Computation with Constant Overhead. arXiv:1310.2984 [quant-ph]. https://doi.org/10.48550/arXiv.1310.2984

Grimsley, J. R., Iadecola, T. F., & Cerezo, M. (2019). Quantum support vector machines for classification. Physical Review A, 99(6), 062324.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, 212-219. https://doi.org/10.48550/arXiv.quant-ph/9605043

Gumann, P., & Chow, J. (2022, September 8). IBM scientists cool down the world’s largest quantum-ready cryogenic concept system. Quantum Systems.

Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum Algorithm for Linear Systems of Equations. Physical Review Letters, 103(15), 150502. https://doi.org/10.1103/PhysRevLett.103.150502

Harty, T. P., Allcock, D. T. C., Ballance, C. J., Guidoni, L., Janacek, H. A., Linke, N. M., Stacey, D. N., & Lucas, D. M. (2014). High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. Physical Review Letters, 113(22), 220501. https://doi.org/10.1103/PhysRevLett.113.220501

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM. Supervised learning with quantum-enhanced feature spaces. Nature. 2019 Mar;567(7747):209-212. doi: 10.1038/s41586-019-0980-2. Epub 2019 Mar 13. PMID: 30867609.

Hornibrook, J. M., Colless, J. I., Conway Lamb, I. D., Pauka, S. J., Lu, H., Gossard, A. C., Watson, J. D., Gardner, G. C., Fallahi, S., Manfra, M. J., & Reilly, D. J. (2015). Cryogenic Control Architecture for Large-Scale Quantum Computing. Phys. Rev. Applied, 3, 024010. https://doi.org/10.1103/PhysRevApplied.3.024010

IBM Research Staff (2023, January 6). Wildlife Corridor Optimization with Qiskit: Enabling smarter, more cost-effective conservation through quantum computing. IBM Quantum Blog. https://research.ibm.com/publications/quantum-in-the-future-computing-environment

IBM Research. (2021). IBM Quantum: Advancing Quantum Computing for Real-world Solutions. https://www.research.ibm.com/artificial-intelligence/quantum/

Jacquier, A., Kondratyev, O., Lipton, A., & de Prado, M. L. (2022). Quantum Machine Learning and Optimisation in Finance: On the Road to Quantum Advantage. Packt Publishing Ltd.

Jazaeri, F., Beckers, A., Tajalli, A., & Sallese, J. M. (2019, June). A review on quantum computing: From qubits to front-end electronics and cryogenic MOSFET physics. In 2019 MIXDES-26th International Conference" Mixed Design of Integrated Circuits and Systems" (pp. 15-25). IEEE.

Kirkpatrick, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671

Kleinberg, J., & Tardos, É. (2006). Algorithm design. Pearson Education India.

Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005). https://doi.org/10.1038/nature03350

Kusyk, Janusz & Saeed, Samah & Uyar, Muharrem. (2021). Survey on Quantum Circuit Compilation for Noisy Intermediate-Scale Quantum Computers - Artificial Intelligence to Heuristics. IEEE Transactions on Quantum Engineering. PP. 1-1. 10.1109/TQE.2021.3068355.

Li, T. (2020). Quantum Algorithms for Machine Learning and Optimization. (Publication No. 27830740). ProQuest Dissertations Publishing, University of Maryland, College Park.

Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411. https://doi.org/10.48550/arXiv.1307.0411

Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10, 631–633. https://doi.org/10.1038/nphys3029

Lucas, M., Danilov, A. V., Levitin, L. V., et al. (2023). Quantum bath suppression in a superconducting circuit by immersion cooling. Nature Communications, 14, 3522. https://doi.org/10.1038/s41467-023-39249-z

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18, 023023. https://doi.org/10.1088/1367-2630/18/2/023023

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of variational quantum algorithms. arXiv preprint quant-ph/1602.07674.**

Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Phys. Rev. A, 98, 032309. https://doi.org/10.1103/PhysRevA.98.032309

Murray, Conal. (2021). Material matters in superconducting qubits. Materials Science and Engineering: R: Reports. 146. 100646. 10.1016/j.mser.2021.100646.

Nakanishi, T., Pigazzini, S., Degenhardt, F., Cordioli, M., Butler-Laporte, G., Maya-Miles, D., Bujanda, L., Bouysran, Y., Niemi, M. E. K., Palom, A., Ellinghaus, D., Khan, A., Martínez-Bueno, M., Rolker, S., Amitrano, S., Roade Tato, L., Fava, F., ... & FinnGen, T. (2021). Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. The Journal of Clinical Investigation, 131(1), 287-297.

Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511976667

Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Science & Business Media.

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading for a universal quantum classifier. Quantum, 4, 226. https://doi.org/10.22331/q-2020-02-06-226

Peruzzo, A., McClean, J., Shadbolt, P., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213

Preskill, J. (1998). Reliable quantum computers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969), 385–410. DOI: 10.1098/rspa.1998.0167

Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79

Qiu, P.-H., Chen, X.-G., & Shi, Y.-W. (2019). Detecting Entanglement with Deep Quantum Neural Networks. IEEE Access, 10.1109/ACCESS.2019.DOI

Qiu, Peng-Hui & Shi, Xiao-Guang & Shi, Yi-Wei. (2019). Detecting Entanglement With Deep Quantum Neural Networks. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2929084.

Rebentrost, P., & Lloyd, S. (2018). Quantum computational finance: quantum algorithm for portfolio optimization. arXiv preprint arXiv:1811.03975.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London.

Schuld, M., & Killoran, N. (2019). Quantum Machine Learning in Feature Hilbert Spaces. Physical Review Letters, 122(4), 040504. https://doi.org/10.1103/PhysRevLett.122.040504

Schuld, M., & Petruccione, F. (2018). Supervised Learning with Quantum Computers (1st ed.). Springer Publishing Company, Incorporated. ISBN: 3319964232.

Schuld, M., Bocharov, A., Svore, K. M., & Wiebe, N. (2020). Circuit-centric quantum classifiers. Physical Review A, 101, 032308. DOI: 10.1103/PhysRevA.101.032308

Schuld, M., Sinayskiy, I., & Petruccione, F. (2016). Prediction by linear regression on a quantum computer. Physical Review A, 94, 022342. https://doi.org/10.1103/PhysRevA.94.022342

Schuld, Maria & Sinayskiy, Ilya & Petruccione, Francesco. (2014). An introduction to quantum machine learning. Contemporary Physics. 56. 10.1080/00107514.2014.964942.

Sete, E.A., Zeng, W.J., & Rigetti, C.T. (2016). A functional architecture for scalable quantum computing. 2016 IEEE International Conference on Rebooting Computing (ICRC), 1-6.

Shor, P. W. (1996). Fault-tolerant quantum computation. Proceedings of 37th Conference on Foundations of Computer Science, 56-65. Retrieved from https://api.semanticscholar.org/CorpusID:7508572

Stephenson, L. J., Nadlinger, D. P., Nichol, B. C., An, S., Drmota, P., Ballance, T. G., Thirumalai, K., Goodwin, J. F., Lucas, D. M., & Ballance, C. J. (2020). High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Physical Review Letters, 124(11), 110501. https://doi.org/10.1103/PhysRevLett.124.110501

Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M., & Gambetta, J. M. (2017). Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Physical review letters, 119(18), 180501.

Wang, Z., Hadfield, S., & Jiang, Z. (2020). Portfolio optimization with quantum machine learning. arXiv preprint arXiv:2002.09002.

Watabe, M., Shiba, K., Chen, C.-C., Sogabe, M., Sakamoto, K., & Sogabe, T. (2021). Quantum Circuit Learning with Error Backpropagation Algorithm and Experimental Implementation. Quantum Reports, 3(2), 333-349. https://doi.org/10.3390/quantum3020021

Wittek, P. (2014) Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, Cambridge, Massachusetts.

Yu, Z., & Li, Y. (2022). Analysis of Error Propagation in Quantum Computers. arXiv preprint arXiv:2209.01699.

Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P., et al. (2019). Bayesian deep learning on a quantum computer. Quantum Machine Intelligence, 1, 41–51. https://doi.org/10.1007/s42484-019-00004-7

Downloads

Published

26.03.2024

How to Cite

Saurabh Choudhary,. (2024). Unlocking the Potential of Quantum Machine Learning: A Paradigm Shift in Optimization. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 1876–1896. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5758

Issue

Section

Research Article