Parkinson's Disease Prediction Using Wave Frequency Data with Enhanced Graph Neural Networks


  • S. SasiRekha, R. Shankar, S. Duraisamy


Biased Binary Bat, ElasticNet, Graph Neural Network, Improved Biased K-Means Clustering, Parkinson's disease


With disproportionately high rates among the elderly, Parkinson's disease (PD) ranks as the world's second most common degenerative neurological ailment. For better treatment outcomes, early detection of PD is crucial, as the majority of symptoms do not manifest until the illness has progressed significantly. In this research we propose parkinson's disease prediction using wave frequency data with enhanced graph neural networks (E-GNN). The dataset was collected from Kaggle repository. After collecting the dataset we use Improved Biased K-Means Clustering algorithm for preprocessing. After preprocessing we use Biased Binary Bat with ElasticNet algorithm for feature selection. After feature selection we use Enhanced Graph Neural Network algorithm for parkinson's disease classification. This E-GNN incorporates advanced enhancements in both architecture and training methodology, pushing the boundaries of accuracy in predicting Parkinson's disease. The integration of cutting-edge techniques within the E-GNN framework enables the model to capture intricate relationships and dependencies within the data, ultimately resulting in more precise and reliable predictions.


Download data is not yet available.


AlZubi, A. A., Alarifi, A., & Al-Maitah, M. (2020). Deep brain simulation wearable IoT sensor device based Parkinson brain disorder detection using heuristic tubu optimized sequence modular neural network. Measurement, 161, 107887. doi:10.1016/j.measurement.2020.107887

Baldini, F., Hertel, J., Sandt, E., Thinnes, C. C., Neuberger-Castillo, L., … Thiele, I. (2020). Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biology, 18(1). doi:10.1186/s12915-020-00775-7

Chen, Z., Li, G., & Liu, J. (2019). Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiology of Disease, 104700. doi:10.1016/j.nbd.2019.104700

Dembek, T. A., Roediger, J., Horn, A., Reker, P., Oehrn, C., Dafsari, H. S., … Timmermann, L. (2019). Probabilistic Sweetspots Predict Motor Outcome for DBS in Parkinson’s Disease. Annals of Neurology. doi:10.1002/ana.25567

Demrozi, F., Bacchin, R., Tamburin, S., Cristani, M., & Pravadelli, G. (2019). Towards a wearable system for predicting the freezing of gait in people affected by Parkinson’s disease. IEEE Journal of Biomedical and Health Informatics, 1–1. doi:10.1109/jbhi.2019.2952618

El Maachi, I., Bilodeau, G.-A., & Bouachir, W. (2020). Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Systems with Applications, 143, 113075. doi:10.1016/j.eswa.2019.113075

Gunduz, H. (2019). Deep Learning-Based Parkinson’s Disease Classification Using Vocal Feature Sets. IEEE Access, 7, 115540–115551. doi:10.1109/access.2019.2936564

Haq, A. U., Li, J., Memon, M. H., khan, J., Malik, A., Ahmad, T., … Shahid, M. (2019). Feature Selection Based on L1-Norm Support Vector Machine and Effective Recognition System for Parkinson’s disease Using Voice Recordings. IEEE Access, 1–1. doi:10.1109/access.2019.2906350

Ibrahim, A., Zhou, Y., Jenkins, M. E., Trejos, A. L., & Naish, M. D. (2021). Real-Time Voluntary Motion Prediction and Parkinson’s Tremor Reduction Using Deep Neural Networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1413–1423. doi:10.1109/tnsre.2021.3097007.

Jacobs, B. M., Belete, D., Bestwick, J., Blauwendraat, C., Bandres-Ciga, S., Heilbron, K., … Noyce, A. J. (2020). Parkinson’s disease determinants, prediction and gene–environment interactions in the UK Biobank. Journal of Neurology, Neurosurgery & Psychiatry, 91(10), 1046–1054. doi:10.1136/jnnp-2020-323646

Kamran, I., Naz, S., Razzak, I., & Imran, M. (2020). Handwriting dynamics assessment using deep neural network for early identification of Parkinson’s disease. Future Generation Computer Systems. doi:10.1016/j.future.2020.11.020

Karapinar Senturk, Z. (2020). Early Diagnosis of Parkinson’s Disease Using Machine Learning Algorithms. Medical Hypotheses, 109603. doi:10.1016/j.mehy.2020.109603

Kaur, S., Aggarwal, H., & Rani, R. (2020). Hyper-parameter optimization of deep learning model for prediction of Parkinson’s disease. Machine Vision and Applications, 31(5). doi:10.1007/s00138-020-01078-1

Khan, A., Chandra Kaushik, A., Ali, S. S., Ahmad, N., & Wei, D.-Q. (2019). Deep-learning-based target screening and similarity search for the predicted inhibitors of the pathways in Parkinson’s disease. RSC Advances, 9(18), 10326–10339. doi:10.1039/c9ra01007f

Miyanishi, K., Choudhury, M. E., Watanabe, M., Kubo, M., Nomoto, M., Yano, H., & Tanaka, J. (2018). Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson’s disease model. Neurochemistry International. doi:10.1016/j.neuint.2018.11.005

Moetesum, M., Siddiqi, I., Vincent, N., & Cloppet, F. (2018). Assessing visual attributes of handwriting for prediction of neurological disorders—A case study on Parkinson’s disease. Pattern Recognition Letters. doi:10.1016/j.patrec.2018.04.008

Nilashi, M., Ibrahim, O., Samad, S., Ahmadi, H., Shahmoradi, L., & Akbari, E. (2019). An Analytical Method for Measuring the Parkinson’s Disease Progression: A Case on a Parkinson’s Telemonitoring Dataset. Measurement. doi:10.1016/j.measurement.2019.01.014

Pandya, S., Zeighami, Y., Freeze, B., Dadar, M., Collins, D. L., Dagher, A., & Raj, A. (2019). Predictive model of spread of Parkinson’s pathology using network diffusion. NeuroImage, 192, 178–194. doi:10.1016/j.neuroimage.2019.03.001

Park, Y. W., Shin, N., Chung, S. J., Kim, J., Lim, S. M., Lee, P. H., … Ahn, K. J. (2019). Magnetic Resonance Imaging–Visible Perivascular Spaces in Basal Ganglia Predict Cognitive Decline in Parkinson’s Disease. Movement Disorders. doi:10.1002/mds.27798

Prince, J., Andreotti, F., & De Vos, M. (2018). Multi-Source Ensemble Learning for the Remote Prediction of Parkinson’s Disease in the Presence of Source-wise Missing Data. IEEE Transactions on Biomedical Engineering, 1–1. doi:10.1109/tbme.2018.2873252

Wang, X., Fan, S., Kuang, K., Shi, C., Liu, J., & Wang, B. (2020). Decorrelated clustering with data selection bias. arXiv preprint arXiv:2006.15874.

Chatra, K., Kuppili, V., Edla, D. R., & Verma, A. K. (2019). Cancer data classification using binary bat optimization and extreme learning machine with a novel fitness function. Medical & Biological Engineering & Computing, 57, 2673-2682.




How to Cite

S. SasiRekha. (2024). Parkinson’s Disease Prediction Using Wave Frequency Data with Enhanced Graph Neural Networks. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 2438–2448. Retrieved from



Research Article

Similar Articles

You may also start an advanced similarity search for this article.