Quantum Computing and Deep Learning Integration: Challenges and Opportunities

Authors

  • Chilakala Lokanath Reddy, Hari Jyothula, Nilofar Mulla, Rajesh B. Raut, Pankaj Ramanlal Beldar, Naeem Akhtar, Anurag Rana

Keywords:

Computational Intelligence; Deep Learning; Hybrid Framework; Quantum Computing, Quantum-Deep Learning Interface, Quantum Advantage.

Abstract

This study introduces a groundbreaking hybrid framework integrating quantum computing (QC) into deep learning for efficient fault diagnosis in electrical power systems. Leveraging the strengths of conditional restricted Boltzmann machines and deep networks, our approach addresses computational challenges through novel QC-based training methodologies. The research unfolds in seven phases, from quantum computing infrastructure to statistical analysis, showcasing the implementation of a cutting-edge quantum processor, TensorFlow-based deep learning, and Quantum-Deep Learning Interface. Results demonstrate a quantum advantage in accuracy, efficiency, and training time reduction. Challenges and opportunities highlight the need for technological maturity, algorithmic complexity solutions, and seamless quantum-classical system interfacing. Future scope encompasses refining algorithms, broadening use cases, and collaborating for responsible deployment. This work marks a transformative step towards computational intelligence, contributing to the synergy of quantum computing and deep learning.

Downloads

Download data is not yet available.

References

Ajagekar and F. You, “Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems,” Appl. Energy, vol. 303, p. 117628, 2021, Dec.. doi:10.1016/j.apenergy. 2021.117628.

R. Kharsa et al., “Advances in quantum machine learning and deep learning for image classification: A survey,” Neurocomputing, vol. 560, p. 126843, 2023, Dec.. doi:10.1016/j.neucom.2023.126843.

R. Miotto et al., “Deep learning for healthcare: Review, opportunities and challenges” [Review], Brief. Bioinform., vol. 19, no. 6, pp. 1236-1246, 2018. doi:10.1093/bib/bbx044.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010.

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018. doi:10.22331/q-2018-08-06-79.

N. D. Mermin, Quantum Computer Science: An Introduction. Cambridge: Cambridge University Press, 2007.

Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015. doi:10.1038/nature14539.

Goodfellow et al., Deep Learning, vol. 1. Cambridge: MIT Press, 2016.

D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016. doi:10.1038/nature16961.

Rajkomar et al., “Machine learning in medicine,” N. Engl. J. Med., vol. 380, no. 14, pp. 1347-1358, 2019. doi:10.1056/NEJMra1814259.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2002.

M. Abadi, et al., “TensorFlow: A system for large-scale machine learning” in Proc. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016.

E. Farhi and H. Neven, 2018, Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002.

Peruzzo, et al., “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun., vol. 5, p. 4213, 2014. doi:10.1038/ncomms5213.

Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015. doi:10.1038/nature14539.

J. R. McClean, et al., “The theory of variational hybrid quantum-classical algorithms,” New J. Phys., vol. 18, no. 2, p. 023023, 2016. doi:10.1088/1367-2630/18/2/023023.

R. S. Smith, et al., 2016, A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006. doi:10.1126/science.1127647.

J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018. doi:10.22331/q-2018-08-06-79.

D. Silver, et al., 2016, Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

I. P. Limited, 2023, Mar. 7, “The future of quantum computing: Opportunities and challenges”. Available at: https://www.linkedin.com/pulse/future-quantum-computing-opportunities#:~:text=Challenges%20of%20Quantum%20Computing%3A&text=Quantum%20computers%20are%20extremely%20sensitive,noise%20is%20a%20major%20challenge.

J. Preskill, “Reliable quantum computers”. Available at: https://arxiv.org/abs/quant-ph/9712048, Proc. R. Soc. Lond. A, vol. 454, no. 1969, 385-410, 1998. doi:10.1098/rspa.1998.0167.

F. Arute, et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505-510. Available at: https://www.nature.com/articles/s41586-019-1666-5, 2019. doi:10.1038/s41586-019-1666-5.

Rigetti, 2019, “Superconducting quantum processors”. Available at: https://arxiv.org/abs/1912.05711.

M. Benedetti, et al., “A generative modeling approach for benchmarking and training shallow quantum circuits,” npj Quantum Inf., vol. 5, no. 1, p. 92. Available at: https://www.nature.com/articles/s41534-019-0223-2, 2019.

J. Biamonte, et al., “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202, 2017. doi:10.1038/nature23474.

P. Rebentrost, et al., “Quantum support vector machine for big data classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503. Available at: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.130503, 2014. doi:10.1103/PhysRevLett.113.130503.

M. Schuld, et al., “Quantum walks on graphs representing the firing patterns of a quantum neural network,” Phys. Rev. A, vol. 89, no. 3, p. 032333. Available at: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.032333, 2014. doi:10.1103/PhysRevA.89.032333.

V. Giovannetti, et al., “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330-1336. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15550626, 2004. doi:10.1126/science.1104149.

K. Mitarai, et al., “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309. Available at: https://journals.aps.org /pra/abstract/10.1103/ PhysRevA.98.032309, 2018. doi:10.1103/ PhysRevA.98.032309.

Downloads

Published

26.03.2024

How to Cite

Chilakala Lokanath Reddy. (2024). Quantum Computing and Deep Learning Integration: Challenges and Opportunities. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 2679 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5870

Issue

Section

Research Article