Transformative Insights: Swin Transformer's Impact on Alzheimer's Detection

Authors

  • Athira R. S., J. Charles

Keywords:

Alzheimer’s disease, Neurodegenerative diseases, Patch Embedding, Swin Transformer.

Abstract

An irreversible neurological illness, Alzheimer's disease (AD) causes a rapid loss in mental function. It is primarily caused by a widespread degeneration of the brain cell and can strike at any age. Due to the progression of Alzheimer's disease, there is a great clinical, societal, and financial demand for early detection of AD. With neural network topologies, deep learning (DL) has become a potent tool for disease categorization, automatically deriving complex patterns from medical data. Deep learning models are useful for finding complex diseases because of their capacity to recognize minute patterns and connections. The major purpose of this work is to overcome the AD diagnosis challenges via MRI images of the brain by constructing a unique deep learning-based model employing a Swin Transformer. The Kaggle repository offers a well-curated         and extensive dataset that is an invaluable tool for doing in-depth analysis and obtaining significant insights. The performance of the Swin Transformer study is demonstrated by its outstanding overall accuracy of 95.12%. Furthermore, a thorough investigation of the performance of current methods at the class level has been carried out by analyzing the parameters of the confusion matrix.

Downloads

Download data is not yet available.

References

Hansson, O. (2021). Biomarkers for neurodegenerative diseases. Nature medicine, 27(6), 954-963.

Fanciulli, A., Stankovic, I., Krismer, F., Seppi, K., Levin, J., &Wenning, G. K. (2019). Multiple system atrophy. International review of neurobiology, 149, 137-192.

Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson's disease and the environment. Frontiers in neurology, 218.

Kane, J. P., Surendranathan, A., Bentley, A., Barker, S. A., Taylor, J. P., Thomas, A. J., ... & O’Brien, J. T. (2018). Clinical prevalence of Lewy body dementia. Alzheimer's research & therapy, 10, 1-8.

Stoker, T. B., Mason, S. L., Greenland, J. C., Holden, S. T., Santini, H., & Barker, R. A. (2021). Huntington’s disease: Diagnosis and management. Practical neurology.

Giagkou, N., Höglinger, G. U., &Stamelou, M. (2019). Progressive supranuclear palsy. International review of neurobiology, 149, 49-86.

Adewale, B. A., Coker, M. M., Ogunniyi, A., Kalaria, R. N., & Akinyemi, R. O. (2023). Biomarkers and Risk Assessment of Alzheimer’s Disease in Low-and Middle-Income Countries. Journal of Alzheimer's Disease, (Preprint), 1-11.

Budson, A. E., & Solomon, P. R. (2021). Memory Loss, Alzheimer's Disease, and Dementia-E-Book: A Practical Guide for Clinicians. Elsevier Health Sciences.

Du, Y., Krakauer, J. W., & Haith, A. M. (2022). The relationship between habits and motor skills in humans. Trends in cognitive sciences, 26(5), 371-387.

Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., & Berg, L. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of neurology, 58(3), 397-405.

Doody, R. S., Thomas, R. G., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., ... & Mohs, R. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. New England Journal of Medicine, 370(4), 311-321.

Voisin, T., &Vellas, B. (2009). Diagnosis and treatment of patients with severe Alzheimer’s disease. Drugs & aging, 26, 135-144.

Hazarika, R. A., Kandar, D., & Maji, A. K. (2022). An experimental analysis of different deep learning based models for Alzheimer’s disease classification using brain magnetic resonance images. Journal of King Saud University-Computer and Information Sciences, 34(10), 8576-8598.

Al-Adhaileh, M. H. (2022). Diagnosis and classification of Alzheimer's disease by using a convolution neural network algorithm. Soft Computing, 26(16), 7751-7762.

An, N., Ding, H., Yang, J., Au, R., & Ang, T. F. (2020). Deep ensemble learning for Alzheimer's disease classification. Journal of biomedical informatics, 105, 103411.

Raees, P. M., & Thomas, V. (2021, May). Automated detection of Alzheimer’s Disease using Deep Learning in MRI. In Journal of Physics: Conference Series (Vol. 1921, No. 1, p. 012024). IOP Publishing.

Lokesh, K., Challa, N. P., Satwik, A. S., Kiran, J. C., Rao, N. K., &Naseeba, B. (2023). Early Alzheimer’s Disease Detection Using Deep Learning. EAI Endorsed Transactions on Pervasive Health and Technology, 9.

Tajammal, T., Khurshid, S. K., Jaleel, A., Qayyum Wahla, S., &Ziar, R. A. (2023). Deep Learning-Based Ensembling Technique to Classify Alzheimer’s Disease Stages Using Functional MRI. Journal of Healthcare Engineering, 2023.

Priyatama, A., Sari, Z., &Azhar, Y. (2023). Deep Learning Implementation using Convolutional Neural Network for Alzheimer’s Classification. Jurnal RESTI (RekayasaSistem dan TeknologiInformasi), 7(2), 310-317.

Alorf, A., & Khan, M. U. G. (2022). Multi-label classification of Alzheimer's disease stages from resting-state fMRI-based correlation connectivity data and deep learning. Computers in Biology and Medicine, 151, 106240.

Mujahid, M., Rehman, A., Alam, T., Alamri, F. S., Fati, S. M., & Saba, T. (2023). An efficient ensemble approach for Alzheimer’s disease detection using an adaptive synthetic technique and deep learning. Diagnostics, 13(15), 2489.

Angkoso, C. V., Agustin Tjahyaningtijas, H. P., Purnama, I., & Purnomo, M. H. (2022). Multiplane Convolutional Neural Network (Mp-CNN) for Alzheimer’s Disease Classification. International Journal of Intelligent Engineering & Systems, 15(1).

Raees, P. M., & Thomas, V. (2021, May). Automated detection of Alzheimer’s Disease using Deep Learning in MRI. In Journal of Physics: Conference Series (Vol. 1921, No. 1, p. 012024). IOP Publishing.

Suganthe, R. C., Geetha, M., Sreekanth, G. R., Gowtham, K., Deepakkumar, S., &Elango, R. (2021). Multiclass classification of Alzheimer’s disease using hybrid deep convolutional neural network. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 145-153.

Liu, J., Li, M., Luo, Y., Yang, S., Li, W., & Bi, Y. (2021). Alzheimer's disease detection using depthwise separable convolutional neural networks. Computer Methods and Programs in Biomedicine, 203, 106032.

Turkson, R. E., Qu, H., Mawuli, C. B., &Eghan, M. J. (2021). Classification of Alzheimer’s disease using deep convolutional spiking neural network. Neural Processing Letters, 53, 2649-2663.

Zhang, P., Lin, S., Qiao, J., & Tu, Y. (2021). Diagnosis of Alzheimer’s disease with ensemble learning classifier and 3D convolutional neural network. Sensors, 21(22), 7634.

Sinha, S., Thomopoulos, S. I., Lam, P., Muir, A., & Thompson, P. M. (2021, December). Alzheimer’s disease classification accuracy is improved by MRI harmonization based on attention-guided generative adversarial networks. In 17th international symposium on medical information processing and analysis (Vol. 12088, pp. 180-189). SPIE.

Downloads

Published

24.03.2024

How to Cite

Athira R. S. (2024). Transformative Insights: Swin Transformer’s Impact on Alzheimer’s Detection. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 3152–3160. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5920

Issue

Section

Research Article