CNN Architecture for Fundus Image Denoising, Robust Feature Extraction and Classification of Features by Using an Ensemble Classifier in Diabetic Retinopathy

Authors

  • Anand M, Meenakshi Sundaram A

Keywords:

Diabetic Retinopathy, Denoising, filering, classification, computer vision.

Abstract

Diabetic retinopathy is considered as the leading cause of vision loss globally. Specifically, it is a microvascular disease that affects the retina resulting in vessel blockage which leads to deprive the retina tissues from nutrition. Effective treatment is possible if it is detected in its early stage because severe and proliferate stages can cause permanent blindness or vision loss.However, this process of DR identification depends on the skills of ophthalmologists, which are sometimes costly and time-consuming. Automatic detection systems were thus developed in an effort to speed up and reduce the cost of the identification process, making it accessible worldwide. The accuracy of the produced predictions, however, was somewhat unsatisfactory for eye doctors to depend on them as diagnostic systems due to the limited credible datasets and medical records for this specific eye illness. Moreover, the captured data suffer from various types of noise. Thus, removing the noise also becomes an important task of this research. As a result, we investigated on a combined denoising and ensemble-based learning technique for filtering and classification. The filtering is done by using CNN based architecture which uses residual noise mapping to identify the noise. In the next stage, we present CNN based feature extraction model and classify the obtained features by using an ensemble classifier. The experimental study shows that the proposed approach achieves classification performance of 97.89, 98.1, and 98.20% in terms of Accuracy, Precision, and Recall for the Kaggle dataset.

Downloads

Download data is not yet available.

References

Lin X, Yufeng X, Pan X, Jingya X, Ding Y, Sun Xue, Song Xiaoxiao, Ren Yuezhong, Shan Peng-Fei (2020) Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 10(1):1–11https://doi.org/10.1038/s41598-020-71908-9

Esser, N., Utzschneider, K. M., & Kahn, S. E. (2020). Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia, 63(10), 2007-2021.DOI: https://doi.org/10.1007/s00125-020-05245-x

https://www.who.int/news/item/06-04-2016-world-health-day-2016-who-calls-for-global-action-to-halt-rise-in-and-improve-care-for-people-with-diabetes

Kumar, S., Anand, A., Nagarathna, R., Kaur, N., Sivapuram, M. S., Pannu, V., ... & Nagendra, H. R. (2021). Prevalence of prediabetes, and diabetes in Chandigarh and Panchkula region based on glycated haemoglobin and Indian diabetes risk score. Endocrinology, diabetes & metabolism, 4(1), e00162.DOI: https://doi.org/10.1002/edm2.162

Tandon N, Anjana RM, Mohan V, Kaur T, Afshin A, Ong K, Mukhopadhyay S, Thomas N, Bhatia E, Krishnan A, Mathur P (2018) The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016. Lancet Glob Health 6(12):1352–1362DOI: https://doi.org/10.1016/S2214-109X(18)30387-5

Shanthi, T., &Sabeenian, R. S. (2019). Modified Alexnet architecture for classification of diabetic retinopathy images. Computers & Electrical Engineering, 76, 56-64.DOI: https://doi.org/10.1016/j.compeleceng.2019.03.004

Sivaprasad, S., & Pearce, E. (2019). The unmet need for better risk stratification of non‐proliferative diabetic retinopathy. Diabetic Medicine, 36(4), 424-433.DOI: https://doi.org/10.1111/dme.13868

Putra, R. E., Tjandrasa, H., &Suciati, N. (2020). Severity classification of non-proliferative diabetic retinopathy using convolutional support vector machine. International Journal of Intelligent Engineering and Systems, 13(4), 156-170.DOI: https://doi.org/10.22266/ijies2020.0831.14

Alyoubi, W. L., Shalash, W. M., &Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377.https://doi.org/10.1016/j.imu.2020.100377

Gayathri, S., Krishna, A. K., Gopi, V. P., &Palanisamy, P. (2020). Automated binary and multiclass classification of diabetic retinopathy using haralick and multiresolution features. IEEE Access, 8, 57497-57504.DOI:https://doi.org/10.1016/10.1109/ACCESS.2020.2979753

Mookiah, M. R. K., Acharya, U. R., Martis, R. J., Chua, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowledge-based systems, 39, 9-22.DOI: https://doi.org/10.1016/j.knosys.2012.09.008

Sikder, N., Masud, M., Bairagi, A. K., Arif, A. S. M., Nahid, A. A., &Alhumyani, H. A. (2021). Severity classification of diabetic retinopathy using an ensemble learning algorithm through analyzing retinal images. Symmetry, 13(4), 670.DOI: https://doi.org/10.3390/sym13040670

Antal, B., & Hajdu, A. (2014). An ensemble-based system for automatic screening of diabetic retinopathy. Knowledge-based systems, 60, 20-27.DOI: https://doi.org/10.1016/j.knosys.2013.12.023

Kandhasamy, J. P., Balamurali, S., Kadry, S., & Ramasamy, L. K. (2020). Diagnosis of diabetic retinopathy using multi level set segmentation algorithm with feature extraction using svm with selective features. Multimedia Tools and Applications, 79(15), 10581-10596.https://doi.org/10.1007/s11042-019-7485-8

E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton, and J.-C. Klein, ‘‘Feedback on a publicly distributed image database: The Messidor database,’’ Image Anal. Stereol., vol. 33, no. 3, pp. 231–234, 2014.DOI: https://doi.org/10.5566/ias.1155

Diabetic Retinopathy Detection-Kaggle. Accessed: Oct. 2019. [Online]. Available: https://www.kaggle.com/c/diabetic-retinopathy-detection/data

T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Lensu, I. Sorri, H. Uusitalo, H. Kälviäinen, and J. Pietilä, ‘‘DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms,’’ Mach. Vis. Pattern Recognit. Res. Group, Lappeenranta Univ. Technol., Lappeenranta, Finland, vol. 73, 2006, pp. 1–17. 1DOI: https://doi.org/10.5244/C.21.15

M. M. Habib, R. A. Welikala, A. Hoppe, C. G. Owen, A. R. Rudnicka, and S. A. Barman, “Detection ofmicroaneurysms in retinal images using an ensemble classifier,” Informatics Med. Unlocked, vol. 9, no. May, pp.44–57, 2017.DOI: https://doi.org/10.1016/j.imu.2017.05.006

Biswas, B., Ghosh, S. K., & Ghosh, A. (2020). DVAE: deep variational auto-encoders for denoising retinal fundus image. In Hybrid Machine Intelligence for Medical Image Analysis (pp. 257-273). Springer, Singapore.DOI:https://doi.org/10.1007/978-981-13-8930-6_10

Firdausy, K., Wahyunggoro, O., Nugroho, H. A., Sasongko, M. B., &Hidayat, R. (2019, October). Impact of Different Degree of Smoothing on Non-Local Means based Filter for Retinal Vessel Modeling. In 2019 5th International Conference on Science in Information Technology (ICSITech) (pp. 118-122). IEEE.DOI: https://doi.org/10.1109/ICSITech46713.2019.8987555

Kalyani, G., Janakiramaiah, B., Karuna, A., & Prasad, L. N. (2023). Diabetic retinopathy detection and classification using capsule networks. Complex & Intelligent Systems, 9(3), 2651-2664.DOI: https://doi.org/10.1007/s40747-021-00318-9

Usman, T. M., Saheed, Y. K., Ignace, D., &Nsang, A. (2023). Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification. International Journal of Cognitive Computing in Engineering, 4, 78-88.DOI: https://doi.org/10.1016/j.ijcce.2023.02.002

Lahmar, C., &Idri, A. (2023). Deep hybrid architectures for diabetic retinopathy classification. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(2), 166-184.DOI: https://doi.org/10.1080/21681163.2022.2060864

Gu, Z., Li, Y., Wang, Z., Kan, J., Shu, J., & Wang, Q. (2023). Classification of diabetic retinopathy severity in fundus images using the vision transformer and residual attention. Computational Intelligence and Neuroscience, 2023.DOI: https://doi.org/10.1155/2023/1305583

Beevi, S. Z. (2023). Multi-Level severity classification for diabetic retinopathy based on hybrid optimization enabled deep learning. Biomedical Signal Processing and Control, 84, 104736.DOI: https://doi.org/10.1016/j.bspc.2023.104736

Nahiduzzaman, M., Islam, M. R., Goni, M. O. F., Anower, M. S., Ahsan, M., Haider, J., & Kowalski, M. (2023). Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier. Expert Systems with Applications, 217, 119557.DOI: https://doi.org/10.1016/j.eswa.2023.119557

Ali, G., Dastgir, A., Iqbal, M. W., Anwar, M., & Faheem, M. (2023). A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification from Fundus Images. IEEE Journal of Translational Engineering in Health and Medicine.DOI: https://doi.org/10.1109/JTEHM.2023.3282104

Kang, E., Min, J., Ye, J.C., et al.: ‘A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction’, Med. Phys., 2016, 44, (10), pp. e360–e375DOI: https://doi.org/10.1002/mp.12344

Wolterink, J.M., Leiner, T., Viergever, M.A., et al.: ‘Generative adversarial networks for noise reduction in low-dose CT’, IEEE Trans. Med. Imaging, 2017, 36, (12), pp. 2536–2545. DOI: https://doi.org/10.1109/TMI.2017.2708987

Chen, H., Zhang, Y., Kalra, M.K., et al.: ‘Low-dose CT with a residual encoder–decoder convolutional neural network’, IEEE Trans. Med. Imaging., 2017, 36, (12), pp. 2524–2535. DOI: https://doi.org/10.1109/TMI.2017.2715284

Bilal, A., Zhu, L., Deng, A., Lu, H., & Wu, N. (2022). AI-based automatic detection and classification of diabetic retinopathy using U-Net and deep learning. Symmetry, 14(7), 1427.DOI: https://doi.org/10.3390/sym14071427

Khan, S. H., Abbas, Z., & Rizvi, S. D. (2019, February). Classification of diabetic retinopathy images based on customised CNN architecture. In 2019 Amity international conference on artificial intelligence (AICAI) (pp. 244-248). IEEE.

Shanthi, T., &Sabeenian, R. S. (2019). Modified Alexnet architecture for classification of diabetic retinopathy images. Computers & Electrical Engineering, 76, 56-64.DOI: https://doi.org/10.1016/j.compeleceng.2019.03.004

Novitasari, D. C. R., Fatmawati, F., Hendradi, R., Rohayani, H., Nariswari, R., Arnita, A., ... &Primadewi, A. (2022). Image fundus classification system for diabetic retinopathy stage detection using hybrid CNN-DELM. Big Data and Cognitive Computing, 6(4), 146. DOI :https://doi.org/10.3390/bdcc6040146

Downloads

Published

24.03.2024

How to Cite

Anand M. (2024). CNN Architecture for Fundus Image Denoising, Robust Feature Extraction and Classification of Features by Using an Ensemble Classifier in Diabetic Retinopathy. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 3806–3818. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6064

Issue

Section

Research Article