Driving Change in Healthcare with AI: The Role of Data Analytics and Informatics in Genomic Medicine


  • Neha Dhaliwal


Data analytics, informatics, AI, genomic medicine, tailored treatment, disease risk prediction, targeted therapies, data security, ethics, regulation


This study looks into how data analytics, informatics, and AI have changed genomic medicine, with a focus on personalized treatments, predicting disease risk, and targeted therapies. Some of the most important results are patient stratification, disease risk prediction, and speeding up the development of drugs. It is emphasized that there are problems with data protection, ethics, and rules, and that strong leadership and teamwork are needed. For game-changing innovations in healthcare in the future, the focus will be on AI models that can be understood, data standards, and ethical behaviour. On comparing ML algorithms for the purpose, it was seen that Convolutional Neural Networks (CNNs) proved to be the most precise for analyzing image-based genomic data, despite their substantial computational demands. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks achieved high accuracy with sequential data but required considerable computational resources.  


Download data is not yet available.


Hassan, M., Awan, F.M., Naz, A., deAndrés-Galiana, E.J., Alvarez, O., Cernea, A., Fernández-Brillet, L., Fernández-Martínez, J.L. and Kloczkowski, A., 2022. Innovations in genomics and big data analytics for personalized medicine and health care: A review. International journal of molecular Sciences, 23(9), p.4645.

Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O., 2016. Deep learning for computational biology. Molecular systems biology, 12(7), p.878.

Brothers, K.B., Morrison, D.R. and Clayton, E.W., 2011. Two large‐scale surveys on community attitudes toward an opt‐out biobank. American journal of medical genetics Part A, 155(12), pp.2982-2990.

Collins, F.S. and Varmus, H., 2015. A new initiative on precision medicine. New England journal of medicine, 372(9), pp.793-795.

Green, E.D., Gunter, C., Biesecker, L.G., Di Francesco, V., Easter, C.L., Feingold, E.A., Felsenfeld, A.L., Kaufman, D.J., Ostrander, E.A., Pavan, W.J. and Phillippy, A.M., 2020. Strategic vision for improving human health at The Forefront of Genomics. Nature, 586(7831), pp.683-692.

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M. and Kitai, T., 2017. Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), pp.2657-2664.

McGuire, A.L., Fisher, R., Cusenza, P., Hudson, K., Rothstein, M.A., McGraw, D., Matteson, S., Glaser, J. and Henley, D.E., 2008. Confidentiality, privacy, and security of genetic and genomic test information in electronic health records: points to consider. Genetics in Medicine, 10(7), pp.495-499.

Poplin, R., Chang, P.C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T. and Gross, S.S., 2018. A universal SNP and small-indel variant caller using deep neural networks. Nature biotechnology, 36(10), pp.983-987.

Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L. and Nolan, G.P., 2010. Computational solutions to large-scale data management and analysis. Nature reviews genetics, 11(9), pp.647-657.

Weiskopf, N.G. and Weng, C., 2013. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), pp.144-151.

Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y., Chen, R., Miriami, E., Karczewski, K.J., Hariharan, M., Dewey, F.E. and Cheng, Y., 2012. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148(6), pp.1293-1307.

Topol, E.J., 2019. High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), pp.44-56.

Suwinski, P., Ong, C., Ling, M.H., Poh, Y.M., Khan, A.M. and Ong, H.S., 2019. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Frontiers in genetics, 10, p.422886.

Malone, E.R., Oliva, M., Sabatini, P.J., Stockley, T.L. and Siu, L.L., 2020. Molecular profiling for precision cancer therapies. Genome medicine, 12, pp.1-19.

Liang, Y. and Kelemen, A., 2016. Big Data science and its applications in health and medical research: Challenges and opportunities. J BiomBiostat, 7(307), p.2.

Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A. and Cho, J.H., 2009. Finding the missing heritability of complex diseases. Nature, 461(7265), pp.747-753.

Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N. and Kroeker, K.I., 2020. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ digital medicine, 3(1), p.17.

Roden, D.M., Xu, H., Denny, J.C. and Wilke, R.A., 2012. Electronic medical records as a tool in clinical pharmacology: opportunities and challenges. Clinical Pharmacology & Therapeutics, 91(6), pp.1083-1086.

Torkamani, A., Wineinger, N.E. and Topol, E.J., 2018. The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics, 19(9), pp.581-590.

Iroju, O.G. and Olaleke, J.O., 2015. A systematic review of natural language processing in healthcare. International Journal of Information Technology and Computer Science, 8, pp.44-50.

Kollias, D., Tagaris, A., Stafylopatis, A., Kollias, S. and Tagaris, G., 2018. Deep neural architectures for prediction in healthcare. Complex & Intelligent Systems, 4, pp.119-131.

Panda, N.R., 2022. A review on logistic regression in medical research. National Journal of Community Medicine, 13(04), pp.265-270.

Badr, N.G., 2019. Blockchain or distributed ledger technology what is in it for the healthcare industry?. In KMIS (pp. 277-284).

Ali, M., Naeem, F., Tariq, M. and Kaddoum, G., 2022. Federated learning for privacy preservation in smart healthcare systems: A comprehensive survey. IEEE journal of biomedical and health informatics, 27(2), pp.778-789.




How to Cite

Neha Dhaliwal. (2024). Driving Change in Healthcare with AI: The Role of Data Analytics and Informatics in Genomic Medicine. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 3762 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6126



Research Article