Precision Robotics Arm System based on Computer Vision

Authors

  • Shripad Bhatlawande, Swati Shilaskar, Ansari Maaz

Keywords:

Industrial Automation, object detection, object classification, robotic arm, degrees of freedom

Abstract

This paper presents an integrated approach to real-time object detection and precise control of a robotic arm (RA), addressing the challenge of seamless environmental interaction. The system utilizes the You Only Look Once version 4 (YOLOv4) algorithm for swift and accurate object identification, along with forward kinematics for RA tracking, ensuring accuracy and responsiveness in real-world applications. The innovation lies in combining different convolutional neural network (CNN) architectures while maintaining precision in implementing the control mechanism with an Arduino Uno microcontroller. Initial implementations for amputees are explored, promising enhanced interaction and autonomy. Validation accuracies of 91.78% and 89.92% highlight the system's effectiveness. Ongoing evaluation and dataset diversification are essential for advancement.

Downloads

Download data is not yet available.

References

Ramalepa, L. P., & Jamisola Jr., R. S. "A review on cooperative robotic arms with mobile or drones bases." International Journal of Automation and Computing, 18(4), 536-555, 2021.

Li, T. H. S., Kuo, P. H., Ho, Y. F., & Liou, G. H. "Intelligent control strategy for robotic arm by using adaptive inertia weight and acceleration coefficients particle swarm optimization." IEEE Access, 7, 126929-126940, 2019.

Ali, I., Suominen, O. J., Morales, E. R., & Gotchev, A. "Multi-view camera pose estimation for robotic arm manipulation." IEEE Access, 8, 174305-174316, 2020.

Zhong, F., Wang, Y., Wang, Z., & Liu, Y. H. "Dual-arm robotic needle insertion with active tissue deformation for autonomous suturing." IEEE Robotics and Automation Letters, 4(3), 2669-2676, 2019.

Xu, Q., Xing, L., Zhao, Y., Jia, T., & Huang, Y. "A source stirred reverberation chamber using a robotic arm." IEEE Transactions on Electromagnetic Compatibility, 62(2), 631-634, 2019.

Huang, B., Li, Z., Wu, X., Ajoudani, A., Bicchi, A., & Liu, J. "Coordination Control of a Dual-Arm Exoskeleton Robot Using Human Impedance Transfer Skills." IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(5), 954-963, 2019.

Kim, C. -K., et al. "Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery." IEEE Robotics and Automation Letters, 4(4), 3473-3480, 2019.

Jiang, Y., Wang, Y., Miao, Z., Na, J., Zhao, Z., & Yang, C. "Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion." IEEE Transactions on Neural Networks and Learning Systems, 33(3), 1010-1021, 2022.

Peng, W., Xu, B., Liang, B., & Wu, A. -G. "Virtual Stereovision Pose Measurement of Noncooperative Space Targets for a Dual-Arm Space Robot." IEEE Transactions on Instrumentation and Measurement, 69(1), 76-88, 2020.

Dongming, G. E., Guanghui, S., Yuanjie, Z., & Jixin, S. "Impedance control of multi-arm space robot for the capture of non-cooperative targets." Journal of Systems Engineering and Electronics, 31(5), 1051-1061, 2020.

Wu, S., Ze, Q., Dai, J., & Zhao, R. "Stretchable origami robotic arm with omnidirectional bending and twisting." Proceedings of the National Academy of Sciences (PNAS), August 30, 2021. [Online]. Available: https://doi.org/10.1073/pnas.2110023118

Carron, A., Arcari, E., Wermelinger, M., Hewing, L., Hutter, M., & Zeilinger, M. N. "Data-Driven Model Predictive Control for Trajectory Tracking With a Robotic Arm." IEEE Robotics and Automation Letters, 4(4), 3758-3765, 2019.

Ranganathan, G. "An Economical Robotic Arm for Playing Chess Using Visual Servoing." Journal of Innovative Image Processing, 2(3), 141-146, 2020.

Matulis, M., & Harvey, C. "A robot arm digital twin utilising reinforcement learning." Computers & Graphics, 95, 106-114, 2021.

Zuo, Y., Qiu, W., Xie, L., Zhong, F., Wang, Y., & Yuille, A. L. "CRAVES: Controlling Robotic Arm With a Vision-Based Economic System." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 4209-4218, 2019.

He, K., Zhang, X., Ren, S., & Sun, J. "Deep Residual Learning for Image Recognition." 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778, 2016.

Simonyan, K., & Zisserman, A. "Very Deep Convolutional Networks for Large-Scale Image Recognition." arXiv:1409.1556 [cs.CV], 2014. [Online]. Available: https://arxiv.org/abs/1409.1556

Bochkovskiy, A., Wang, C. -Y., & Liao, H. -Y. M. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv:2004.10934 [cs.CV], April 2020. [Online]. Available: https://arxiv.org/abs/2004.10934

Downloads

Published

05.06.2024

How to Cite

Shripad Bhatlawande. (2024). Precision Robotics Arm System based on Computer Vision. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 4221–4227. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6136

Issue

Section

Research Article