A Systematic Review of Noninvasive Blood Glucose Estimation Using Near Infrared

Authors

  • Fitrilina, Muhammad Ilhamdi Rusydi, Rahmadi Kurnia, Budi Sunaryo, Salisa ‘Asyarina Ramadhani5

Keywords:

Blood Glucose, Machine Learning, Near Infrared, Noninvasive,

Abstract

Diabetes is a chronic and lifelong disease, one of the ten highest causes of death in the world. Diabetes management can only be done by carrying out continuous monitoring. Noninvasive blood glucose measuring devices are needed to overcome the weaknesses of invasive methods, but their accuracy still needs to be improved. This review aims to identify factors that influence the accuracy of estimating blood glucose levels using noninvasive methods based on NIR signals and to observe the development of this technology over the last five years. We performed a systematic review based on articles focusing on noninvasive blood glucose level estimation using near-infrared. This systematic review used the PRISMA 2020 guidelines. Primary studies were retrieved from the literature search engine Scopus database, including journals and proceedings: IEEE, Science Direct, Springer Link, MDPI, Word Scientific, and others. This review provides an overview of using NIR and PPG signals, primary and advanced signal processing, conventional and machine learning approaches, and trends. A total of 62 studies were included. Thirty studies used the conventional approach, and thirty-two studies used machine learning. Thirty-eight studies use primary signal processing, and twenty-four studies use advanced signal processing. Forty studies use NIR signals, and twenty-two studies use PPG signals. India, China, and Indonesia are the top 3 countries in publications on this topic. Using advanced signal processing and feature extraction on photoplethysmography signals and machine learning as an estimation method is quite promising for increasing accuracy. The best machine learning method can be analyzed using meta-analysis.

Downloads

Download data is not yet available.

References

Karuranga, Joao da Rocha Fernandes, Yadi Huang, Eighth edition 2017. 2017. [Online]. Available: https://www.idf.org/aboutdiabetes/type-2-diabetes.html

E. Susana, K. Ramli, P. D. Purnamasari, and N. H. Apriantoro, “Non-Invasive Classification of Blood Glucose Level Based on Photoplethysmography Using Time–Frequency Analysis,” Inf., vol. 14, no. 3, 2023, doi: 10.3390/info14030145.

P. Saeedi et al., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition,” Diabetes Res. Clin. Pract., vol. 157, p. 107843, 2019, doi: 10.1016/j.diabres.2019.107843.

M. S. Asekar, “Glucose Measuring Device Using NIR Spectroscopy,” 2018 Second Int. Conf. Intell. Comput. Control Syst., no. Iciccs, pp. 572–575, 2018.

S. Hossain, B. Debnath, S. Biswas, M. J. Al-Hossain, A. Anika, and S. K. Zaman Navid, “Estimation of Blood Glucose from PPG Signal Using Convolutional Neural Network,” BECITHCON 2019 - 2019 IEEE Int. Conf. Biomed. Eng. Comput. Inf. Technol. Heal., pp. 53–58, 2019, doi: 10.1109/BECITHCON48839.2019.9063187.

I. Marius and P. Sever, “Measuring glucose blood with spectroscopy skin in near infrared,” Proc. 11th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2019, 2019, doi: 10.1109/ECAI46879.2019.9042026.

D. Ghozzi, Y. Manai, and K. Nouri, “Comparison of Linear and Non-Linear Regression Models for Non-Invasive Blood Glucose Measurement,” J. Comput. Sci., vol. 15, no. 11, pp. 1607–1616, 2019, doi: 10.3844/jcssp.2019.1607.1616.

B. Javid, F. G. Faranak, and F. S. Zakeri, “Noninvasive optical diagnostic techniques for mobile blood glucose and bilirubin monitoring,” J. Med. Signals Sens., vol. 8, no. 3, pp. 125–139, 2018, doi: 10.4103/jmss.JMSS-8-18.

S. K. and K. A. U. M. Gayathri B, “Non-invasive blood glucose measurement using near infra-red spectroscopy,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2019-Novem, pp. 1139–1142, 2019, doi: 10.1109/R10-HTC47129.2019.9042473.

S. V. Suryakala and S. Prince, “Chemometric analysis of diffuse reflectance spectral data using singular value decomposition for blood glucose detection,” Biomed. Eng. - Appl. Basis Commun., vol. 30, no. 5, pp. 1–9, 2018, doi: 10.4015/S1016237218500278.

S. A. Aswathy and L. Anusree, “Non Invasive Blood Glucose Detection along with an Assistive Diabetes Monitoring App,” Proc. 2018 Int. Conf. Curr. Trends Towar. Converging Technol. ICCTCT 2018, pp. 1–5, 2018, doi: 10.1109/ICCTCT.2018.8551094.

[12] P. K. Sen, M. R. Laskar, and S. K. Das Mandal, “Non-invasive estimation of blood glucose level in Visible-NIR Spectrum: System and software design,” 2019 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2019, pp. 416–420, 2019, doi: 10.1109/WiSPNET45539.2019.9032840.

J. Yadav, A. Rani, V. Singh, and B. Moahn, “Comparative Study of Di ff erent Measurement Sites using NIR Based Non-invasive Glucose Measurement system,” vol. 70, pp. 469–475, 2015, doi: 10.1016/j.procs.2015.10.082.

I. Akkaya, E. Selim, M. Altintas, and M. Engin, “Power spectral density-based nearinfrared sub-band detection for noninvasive blood glucose prediction in both in-vitro and in-vivo studies,” J. Innov. Opt. Health Sci., vol. 11, no. 6, pp. 1–12, 2018, doi: 10.1142/S1793545818500359.

V. P. Rachim and W. Y. Chung, “Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring,” Sensors Actuators, B Chem., vol. 286, no. October 2018, pp. 173–180, 2019, doi: 10.1016/j.snb.2019.01.121.

K. Sarkar, D. Ahmad, S. K. Singha, and M. Ahmad, “Design and Implementation of a Noninvasive Blood Glucose Monitoring Device,” 2018 21st Int. Conf. Comput. Inf. Technol. ICCIT 2018, pp. 1–5, 2019, doi: 10.1109/ICCITECHN.2018.8631942.

I. Marius and P. Sever, “Algorithms of Absorbance and Colorimeter for Measuring Blood Glucose,” 2019 11th Int. Symp. Adv. Top. Electr. Eng. ATEE 2019, pp. 1–6, 2019, doi: 10.1109/ATEE.2019.8724886.

R. P. Jenie et al., “Device for Noninvasive Optical Measurement of Blood Glucose Level Based on Discrete Fourier Transform and Fast Artificial Neural Network,” J. Med. Devices, Trans. ASME, vol. 13, no. 4, 2019, doi: 10.1115/1.4044336.

N. D. Nanayakkara, S. C. Munasingha, and G. P. Ruwanpathirana, “Non-invasive blood glucose monitoring using a hybrid technique,” MERCon 2018 - 4th Int. Multidiscip. Moratuwa Eng. Res. Conf., pp. 7–12, 2018, doi: 10.1109/MERCon.2018.8421885.

J. H. Andersen et al., “Bioimpedance and NIR for non-invasive assessment of blood glucose,” J. Electr. Bioimpedance, vol. 10, no. 1, pp. 133–138, 2019, doi: 10.2478/joeb-2019-0019.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Levenberg – Marquardt-based non-invasive blood glucose measurement system,” vol. 2063, 2017, doi: 10.1080/03772063.2017.1351313.

A. Hina and W. Saadeh, “Noninvasive Blood Glucose Monitoring Systems Using,” 2022.

W. V. Gonzales, A. T. Mobashsher, and A. Abbosh, The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors, vol. 19, no. 4. 2019. doi: 10.3390/s19040800.

H. Tjahjadi, H. Sudaryanto, A. Budi Rahmanto, A. V. Lesmana, A. Ilham Irianto, and O. Alifian, “A Review of Non-Invasive Monitoring of Blood Glucose Levels Based on Photoplethysmography Signals Using Artificial Intelligence,” Proc. - ICACSIS 2022 14th Int. Conf. Adv. Comput. Sci. Inf. Syst., pp. 111–116, 2022, doi: 10.1109/ICACSIS56558.2022.9923513.

E. Susana and K. Ramli, “Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology,” 17th Int. Conf. Qual. Res. QIR 2021 Int. Symp. Electr. Comput. Eng., pp. 158–163, 2021, doi: 10.1109/QIR54354.2021.9716164.

S. Zanelli, M. Ammi, M. Hallab, and M. A. El Yacoubi, “Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review,” Sensors, vol. 22, no. 13, pp. 0–28, 2022, doi: 10.3390/s22134890.

M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.

S. Suherman, “Assessment of mathematical creative thinking : A systematic review,” vol. 44, no. January, 2022, doi: 10.1016/j.tsc.2022.101019.

M. J. Page et al., “RESEARCH METHODS AND REPORTING PRISMA 2020 explanation and elaboration : updated guidance and exemplars for reporting systematic reviews review findings . The Preferred,” 2021, doi: 10.1136/bmj.n160.

B. Lakshmi Priya, S. Jayalakshmy, R. Bhuvaneshwar, and J. Kishore Kumar, “Non - Invasive Blood Glucose Monitoring based on Visible LASER Light,” Proc. 3rd Int. Conf. Commun. Electron. Syst. ICCES 2018, no. Icces, pp. 938–941, 2018, doi: 10.1109/CESYS.2018.8724048.

Y. Lin, J. Chen, and T. Pan, “Discrete Wavelengths Screening Method for the Near-Infrared Spectroscopic Analysis of Serum Glucose,” Work. Hyperspectral Image Signal Process. Evol. Remote Sens., vol. 2019-Septe, pp. 1–5, 2019, doi: 10.1109/WHISPERS.2019.8921005.

M. Ionescu, “Glucometry and pulse oximetry-comparative noninvasive methods for determining blood glucose,” 2019 7th E-Health Bioeng. Conf. EHB 2019, pp. 21–24, 2019, doi: 10.1109/EHB47216.2019.8970001.

K. T. Sithara Surendran and T. Sasikala, “Sensor system based non-invasive system to measure glucose level in human body,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, pp. 203–207, 2019, doi: 10.1109/ICCMC.2019.8819766.

A. Hina, S. Minto, and W. Saadeh, “A 208μW PPG-based Glucose Monitoring SoC using Ensembled Boosted Trees,” 20th IEEE Int. Interreg. NEWCAS Conf. NEWCAS 2022 - Proc., pp. 241–245, 2022, doi: 10.1109/NEWCAS52662.2022.9842163.

S. Venkataramanan, D. Kamble, A. Bairolu, A. Singh, and R. Rao, “A novel heart rate and non-invasive glucose measuring device,” Proc. 2017 IEEE Int. Conf. Commun. Signal Process. ICCSP 2017, vol. 2018-Janua, pp. 1796–1800, 2018, doi: 10.1109/ICCSP.2017.8286704.

K. Bagais, S. Al-Fahaid, S. Al-Marshood, and I. Al-Naib, “Design and development of a smart glucometer using near-infrared technology,” 2019 8th Int. Conf. Model. Simul. Appl. Optim. ICMSAO 2019, pp. 1–5, 2019, doi: 10.1109/ICMSAO.2019.8880453.

S. Deepthi, N. S. Valke, J. P. Parvathy, A. K. Sai, and G. Sajjan, “Non-invasive blood glucose measurement system,” 2019 5th IEEE Int. WIE Conf. Electr. Comput. Eng. WIECON-ECE 2019 - Proc., pp. 1–4, 2019, doi: 10.1109/WIECON-ECE48653.2019.9019919.

O. Olakanmi, I. A. Kamil, and O. P. Atilola, “NIBG: An efficient near-infrared spectroscopy-based device for tele-monitoring blood glucose level of diabetes outpatients in an e-health system,” Int. J. Biomed. Eng. Technol., vol. 30, no. 2, pp. 95–112, 2019, doi: 10.1504/IJBET.2019.100553.

N. A.rocha Jr and R. San Jose Reyes, “Non-invasive Glucose Monitoring with Combinations of near Infrared Spectroscopy and Metabolic Heat Conformation Technology Using Multivariate Analysis Approach,” ACM Int. Conf. Proceeding Ser., pp. 83–89, 2020, doi: 10.1145/3431943.3431957.

S. Mamilov, D. Velyhotskyi, S. Yesman, A. Mysiura, I. Bekh, and A. Gisbrecht, “Non-Invasive Assessment of Blood Glucose Changes with Near Infrared Sensor,” 2020 IEEE 40th Int. Conf. Electron. Nanotechnology, ELNANO 2020 - Proc., pp. 536–540, 2020, doi: 10.1109/ELNANO50318.2020.9088873.

A. Kassem, M. Hamad, G. G. Harbieh, and C. El Moucary, “A Non-Invasive Blood Glucose Monitoring Device,” Middle East Conf. Biomed. Eng. MECBME, vol. 2020-Octob, no. 978, pp. 1–4, 2020, doi: 10.1109/MECBME47393.2020.9265170.

M. A. Al-Dhaheri, N. E. Mekkakia-Maaza, H. Mouhadjer, and A. Lakhdari, “Noninvasive blood glucose monitoring system based on near-infrared method,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 1736–1746, 2020, doi: 10.11591/ijece.v10i2.pp1736-1746.

S. Piyapan, M. Krachaechuang, T. Samakit, T. Somboonwong, K. Srininrat, and P. Naiyanertr, “Telemed noninvasive glucose blood level measuring by near infrared light,” 2020 8th Int. Electr. Eng. Congr. iEECON 2020, pp. 7–10, 2020, doi: 10.1109/iEECON48109.2020.229531.

R. Taghizadeh-Behbahani, R. Boostani, and M. Yazdi, “A Practical Noninvasive Blood Glucose Measurement System Using Near-Infrared Sensors,” Biomed. Eng. - Appl. Basis Commun., vol. 33, no. 5, 2021.

S. U. Hepriyadi and A. Nasution, “Measurement of glucose concentrations in solid tissue phantom using diffuse reflectance technique in NIR region,” in Fourth International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2020), 2021.

S. Sathishkumar, S. Balasubramanian, D. Sridhar, R. Ramesh, and M. G. Sumithra, “IR-RING: Non-invasive Continuous Blood Glucose Monitor,” 6th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2022 - Proc., pp. 330–334, 2022, doi: 10.1109/ICECA55336.2022.10009344.

T. R. Khan, A. Mostofa, and M. Dey, “Non-Invasive Blood Glucose Measurement Device: Performance analysis of Diffused Reflectance method and Diffused Transmittance method using Near Infrared Light,” 3rd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2023, pp. 1–6, 2023, doi: 10.1109/ECCE57851.2023.10101505.

K. . Acharya, M. . Yashwanth Gowda, M. Vijay, S. Deepthi, S. Malathi, and P. Ure, “Parametric And Non-Parametric Regression Approaches for Non-Invasive Blood Glucose Monitoring,” Biomed. Eng. - Appl. Basis Commun., vol. 32, no. 6, 2020.

[49] M. Naresh and S. Peddakrishna, “Non-invasive glucose measurement using 950 nm reflective short wave NIR technique,” Res. Biomed. Eng., vol. 39, no. 3, pp. 747–757, 2023, doi: 10.1007/s42600-023-00308-5.

A. Diana Selsiya, K. Janaki, G. Lavanya, G. Sanjai, and M. Dinesh, “Non-Invasive Blood Glucose Measurement Using Ire Sensor,” 2023 9th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2023, vol. 1, pp. 2031–2035, 2023, doi: 10.1109/ICACCS57279.2023.10112689.

K. Godfrey, I. Gatare, and G. Rushingabigwi, “Non-Invasive IoT-Based Embedded Device for Testing Diabetes Mellitus Type 2 for Early Detection and Prediction,” Proc. 2023 IEEE Int. Conf. Adv. Syst. Emergent Technol. IC_ASET 2023, pp. 1–5, 2023, doi: 10.1109/IC_ASET58101.2023.10150822.

A. Carrillo and C. Gomez-Meade, Blood Glucose. Springer Singapore, 2020. doi: 10.1007/978-3-030-39903-0_1187.

K. D. Pathirage, P. Roopasinghe, J. J. Sooriyaarachchi, R. Weththasinghe, and N. D. Nanayakkara, “Removing subject dependencies on Non-Invasive Blood Glucose Measurement using Hybrid Techniques,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 7197–7200, 2019, doi: 10.1109/EMBC.2019.8856391.

J. Cheng, Z. Ji, M. Li, and J. Dai, “Study of a noninvasive blood glucose detection model using the near-infrared light based on SA-NARX,” Biomed. Signal Process. Control, vol. 56, p. 101694, 2020, doi: 10.1016/j.bspc.2019.101694.

A. M. Joshi, P. Jain, S. P. Mohanty, and N. Agrawal, “IGLU 2.0: A New Wearable for Accurate Non-Invasive Continuous Serum Glucose Measurement in IoMT Framework,” IEEE Trans. Consum. Electron., vol. 66, no. 4, pp. 327–335, 2020, doi: 10.1109/TCE.2020.3011966.

O. Alfandi, “An Intelligent IoT Monitoring and Prediction System for Health Critical Conditions,” Mob. Networks Appl., vol. 27, no. 3, pp. 1299–1310, 2022, doi: 10.1007/s11036-021-01892-5.

H. Ibrahim, M. S. Darweesh, and A. Soltan, “An Optimized Non-Invasive Blood Glucose and Temperature Body Measurement System,” 2022 11th Int. Conf. Mod. Circuits Syst. Technol. MOCAST 2022, pp. 2–5, 2022, doi: 10.1109/MOCAST54814.2022.9837536.

A. Hina, H. Nadeem, and W. Saadeh, “A single LED photoplethysmography-based noninvasive glucose monitoring prototype system,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2019-May, 2019, doi: 10.1109/ISCAS.2019.8702747.

P. P. Pai, P. K. Sanki, S. K. Sahoo, A. De, S. Bhattacharya, and S. Banerjee, “Cloud Computing-Based Non-Invasive Glucose Monitoring for Diabetic Care,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, no. 2, pp. 663–676, 2018, doi: 10.1109/TCSI.2017.2724012.

X. Zhou, R. Lei, B. Wi.-K. Ling, and C. Li, “Joint Empirical Mode Decomposition and Singular Spectrum Analysis Based Pre-processing Method for Wearable Non-invasive Blood Glucose Esrimation,” in 2019 IEEE 4th International Conference on Signal and Image Processing, 2019, pp. 259–263.

Z. Li, Q. Ye, Y. Guo, Z. Tian, B. W. K. Ling, and R. W. K. Lam, “Wearable Non-invasive Blood Glucose Estimation via Empirical Mode Decomposition Based Hierarchical Multiresolution Analysis and Random Forest,” Int. Conf. Digit. Signal Process. DSP, vol. 2018-Novem, pp. 1–5, 2019, doi: 10.1109/ICDSP.2018.8631545.

M. I. Solihin, Y. Shameem, T. Htut, C. K. Ang, and M. Bt Hidayab, “Non-invasive blood glucose estimation using handheld near infra-red device,” Int. J. Recent Technol. Eng., vol. 8, no. 3 Special Issue, pp. 16–19, 2019, doi: 10.35940/ijrte.C1004.1083S19.

S. N. Nampoothiri, R. K. Pathinarupothi, M. V. Ramesh, and K. A. U. Menon, “Comparison of Infrared and Red Photoplethysmography signals for Non-calibrated Non-invasive Blood Glucose Monitoring,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp. 1568–1571, 2020, doi: 10.1109/TENSYMP50017.2020.9230743.

A. Hina and W. Saadeh, “A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography.,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 3, pp. 504–515, Jun. 2020, doi: 10.1109/TBCAS.2020.2979514.

H. M. Heise, S. Delbeck, and R. Marbach, “Noninvasive monitoring of glucose using near-infrared reflection spectroscopy of skin—constraints and effective novel strategy in multivariate calibration,” Biosensors, vol. 11, no. 3, 2021, doi: 10.3390/bios11030064.

Y. Yu, J. Huang, J. Zhu, and S. Liang, “An Accurate Noninvasive Blood Glucose Measurement System Using Portable Near-Infrared Spectrometer and Transfer Learning Framework,” IEEE Sens. J., vol. 21, no. 3, pp. 3506–3519, 2021, doi: 10.1109/JSEN.2020.3025826.

X. Ding, B. W. K. Ling, and C. Huang, “Non-invasive Blood Glucose Estimation Using Statistical Features Defined via Convex Combination of One Norm and Infinity Norm Optimization Problems,” ISPCE-ASIA 2022 - IEEE Int. Symp. Prod. Compliance Eng. - Asia 2022, pp. 1–4, 2022, doi: 10.1109/ISPCE-ASIA57917.2022.9970814.

Y. Wei, B. W. K. Ling, Q. Liu, and J. Liu, “Multi-models with averaging in feature domain for non-invasive blood glucose estimation,” ISPCE-ASIA 2022 - IEEE Int. Symp. Prod. Compliance Eng. - Asia 2022, 2022, doi: 10.1109/ISPCE-ASIA57917.2022.9971019.

C. Huang, B. W. K. Ling, and X. Ding, “Relationship between statistics and filters in noninvasive blood glucose estimation analysis,” ISPCE-ASIA 2022 - IEEE Int. Symp. Prod. Compliance Eng. - Asia 2022, pp. 1–4, 2022, doi: 10.1109/ISPCE-ASIA57917.2022.9970906.

C.-T. Yen, U. Chen, G.-C. Wang, and Zo.-Xi. Chen, “Non-Invasive Blood Glucose Estimation System Based on a and Bioelectrical Impedance Measuring,” Sensors (Switzerland), vol. 22, no. 12, pp. 1–13, 2022.

G. Hammour and D. P. Mandic, “An In-Ear PPG-Based Blood Glucose Monitor: A Proof-of-Concept Study.,” Sensors (Basel)., vol. 23, no. 6, Mar. 2023, doi: 10.3390/s23063319.

E. J. Argüello-Prada and S. M. Bolaños, “On the role of perfusion index for estimating blood glucose levels with ultrasound-assisted and conventional finger photoplethysmography in the near-infrared wavelength range,” Biomed. Signal Process. Control, vol. 86, no. February, pp. 1–7, 2023, doi: 10.1016/j.bspc.2023.105338.

Q. Pham, T. Nguyen, A. H. Ba, H. Ngo, H. Vo, and N. Tran, “An Embedded System for Non-Invasive Glucose Monitoring,” 2023 Int. Conf. Multimed. Anal. Pattern Recognit., pp. 1–6, 2023, doi: 10.1109/MAPR59823.2023.10289110.

Y. Sun et al., “Random Forest Analysis of Combined Millimeter-wave and Near-infrared Sensing for Non-invasive Glucose Detection,” IEEE Sens. J., vol. PP, no. August, p. 1, 2023, doi: 10.1109/JSEN.2023.3293248.

Downloads

Published

12.06.2024

How to Cite

Fitrilina. (2024). A Systematic Review of Noninvasive Blood Glucose Estimation Using Near Infrared. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 59–76. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6174

Issue

Section

Research Article