Early Detection of Breast Cancer Using Gan and Resnet Emulsion Approach

Authors

  • G. Divya Zion, B. K. Tripathy

Keywords:

Breast cancer detection, Generative Adversarial Network (GAN), Residual Neural Networks, Convolutional Neural Networks, Machine Learning.

Abstract

Breast cancer analysis is critical for clinical diagnosis and treatment. It is characterized by abnormal cell growth and tumor formation and remains a significant health concern among women. To address this issue, researchers have explored traditional and various individual deep learning algorithms, such as convolutional neural networks (CNNs) and artificial neural networks (ANNs). Furthermore, the mono-based model study could cause the model's classification accuracy to be low when using deep learning in medical diagnosis. So, to address this issue, we proposed a novel approach that combines generative adversarial networks (GANs) with residual neural networks (ResNet) for accurate breast cancer detection using histopathological images. The enriched dataset ensures better generalization during training, and we used GANs to supplement the training dataset. By generating synthetic images, GANs enhance feature recognition and improve model robustness. The augmented data fine-tunes ResNet, a powerful deep learning architecture, for classification. The GAN-ResNet channel uses discriminatory features extracted by the discriminator from GAN-generated images. This fusion combines GANs’ discriminative power with ResNet’s classification capabilities. We specifically fine-tuned the final model layer for binary classification, enabling it to distinguish between malignant and benign breast tissue. We adapt the loss function to handle imbalances in the medical dataset, ensuring a more robust and accurate model. Our proposed model demonstrates a remarkable 95% accuracy in analyzing histopathological images, validating its efficacy for early breast cancer detection at its earliest stage.

Downloads

Download data is not yet available.

References

Breast cancer, Accessed: Nov. 15, 2023. [Online].Available:https://

www.who.int/news-room/fact-sheets/detail/breast-cancer

What Are the Risk Factors for Breast Cancer? | CDC.” Accessed: Nov. 15, 2023. Available:https://www.cdc.gov/cancer/breast/

basic_info/risk_factors.htm

Y. S. Sun et al., “Risk Factors and Preventions of Breast Cancer,” Int J Biol Sci, vol. 13, no. 11, p. 1387, 2017, doi: 10.7150/IJBS.

PDQ Screening and Prevention Editorial Board. PDQ Cancer Information Summaries [Internet]. National Cancer Institute (US); Bethesda (MD): Jun 7, 2023. Breast Cancer Screening (PDQ): Health Professional Version. [PubMed] URL: https://www.ncbi.

nlm.nih.gov/books/NBK65793/

Doren A, Vecchiola A, Aguirre B, Villaseca P. Gynecological-endocrinological aspects in women carriers of BRCA1/2 gene mutations. Climacteric. 2018 Dec;21(6):529-535. [PubMed].DOI:

1080/13697137.2018.1514006.URL:https://doi.org/10.1080/13697137.2018.1514006

Bhattacharyya, S., Snasel, V., Hassanian, A. E., Saha, S. and Tripathy, B. K.: Deep Learning Research with Engineering Applications, De Gruyter Publications, (2020). ISBN: 3110670909,

URL:https://doi.org/10.1007/978-981-99-3734-9_15

Maheswari, Karan Shaha, Aditya Arya, Dhruv, Rajkumar, R. and Tripathy, B. K.: Convolutional Neural Networks: A Bottom-Up Approach, (Ed: S. Bhattacharyya, A. E. Hassanian, S. Saha and B.K. Tripathy, Deep Learning Research with Engineering Applications), De Gruyter Publications, (2020), pp.21-50.URL: https://doi.org/10.

/9783110670905-002

Baktha, K. and Tripathy, B. K.: Investigation of recurrent neural networks in the field of sentiment analysis, 2017 International Conference on Communication and Signal Processing (ICCSP), 2017, pp. 2047-2050. DOI: 10.1109/ICCSP.2017.8286763

Jain, Satin Singhania, Udit, Tripathy, B.K. Nasr, Emad Abouel, Aboudaif, Mohamed K. and Kamrani, Ali K.: Deep Learning based Transfer Learning for Classification of Skin Cancer, Sensors (Basel), 2021 Dec 6;21(23):8142. DOI: 10.3390/s21238142

Debgupta R., Chaudhuri B.B., Tripathy B.K. A Wide ResNet-Based Approach for Age and gender Estimation in Face Images. In: Khanna A., Gupta D., Bhattacharyya S., Snasel V., Platos J., Hassanien A. (eds) International Conference on Innovative Computing and Communications, Advances in Intelligent Systems and Computing, vol 1087, Springer, Singapore, (2020), pp 517-530, URL: https://doi.org/10.1007/978-981-15-1286-5_44

Bhandari, A., Tripathy, B. K., Adate, A. Saxena, R. and Gadekallu, T. R.: From Beginning to BEGANing: Role of Adversarial Learning in Reshaping Generative Models, Electronics, Special Issue on Artificial Intelligence Technologies and Applications, (2023) , 12(1), 155; DOI: 10.3390/electronics12010155 URL: https://doi.

org/10.3390/electronics12010155

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. DOI: 10.48550/arXiv.1512.03385 URL:https://doi.org/10.48550/arXiv.

03385

Vesal, S., Ravikumar, N., Davari, A., Ellmann, S., Maier, A., 2018. Classification of breast cancer histology images using transfer learning, in: Image Analysis and Recognition: 15th International Conference, ICIAR 2018, P´ovoa de Varzim, Portugal, June 27–29, 2018, Proceedings 15, Springer. pp.812–819. DOI: 10.1007/978-3-319-93000-8_92 URL: https://doi.org/10.1007/978-3-319-93000-8_92

Alruwaili, M., Gouda, W., 2022. Automated breast cancer detection models based on transfer learning. Sensors 22, 876. DOI: 10.3390/s22030876 URL: https://doi.org/10.3390/s22030876

Zebari, D.A., Haron, H., Sulaiman, D.M., Yusoff, Y., Othman, M.N.M., 2022.CNN-based Deep Transfer Learning Approach for Detecting Breast Cancer in Mammogram Images, in: 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC), IEEE. pp. 256–261 URL:https://doi.org/10.1109/ICSPC55597.2022.100017

DOI: 10.1109/ICSPC55597.2022.10001781

Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017. URL: https://doi.org/10.48550/arXiv.1703.

DOI: 10.48550/arXiv.1703.10593

S. Saha. A Comprehensive Guide to Convolutional Neural Networks-ELI5 way. Towards Data Science, A Medium publication sharing concepts, ideas, and codes, 2018. URL:https://www.ise.

ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2022/08/A-Comprehensive-Guide-to-Convolutional-Neural-Networks-%E2%80%94-the-ELI5-way-_-by-Sumit-Saha-_-Towards-Data-Science.pdf

S. Jia. Vanishing Gradient vs Degradation. Towards Data Science, A Medium publication sharing concepts, ideas, and codes, Sep, 2018. URL: https://medium.com/@shaoliang.jia/vanishing-gradient

-vs-degradation-b719594b6877

K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. Microsoft Research. 2015. URL: https://doi.org/10.

/arXiv.1512.03385

Z. JAN, S. KHAN, N. ISLAM, M. ANSARI, B. BALOCH, Automated Detection of Malignant Cells Based on Structural Analysis and Naive Bayes Classifier, Sindh University Research Journal-SURJ (Science Series) 48 (2). URL: https://web.archive.

org/web/20210124191755/https://sujo-old.usindh.edu.pk/index.

php/SURJ/article/download/2348/1998

M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, R. Monczak, Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images, Computers in biology and medicine 43 (10) (2013) 1563–1572. DOI: 10.1016/j.compbiomed.2013.08.003

P. Filipczuk, T. Fevens, A. Krzyzak, R. Monczak, Computer Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies., IEEE Trans. Med. Imaging 32 (12) (2013) 2169–2178. URL:https://doi.org/10.1109/tmi.2013.2275151

Y. M. George, H. H. Zayed, M. I. Roushdy, B. M. Elbagoury, Remote computer-aided breast cancer detection and diagnosis system based on cytological images, IEEE Systems Journal 8 (3) (2014) 949–964. DOI: 10.1109/JSYST.2013.2279415

H. Irshad, A. Veillard, L. Roux, D. Racoceanu, Methods for nuclei detection, segmentation, and classification in digital histopathology: a review current status and future potential, IEEE reviews in biomedical engineering 7 (2014) 97–114. DOI: 10.1109/RBME.

2295804

M. Veta, J. P. Pluim, P. J. Van Diest, M. A. Viergever, Breast cancer histopathology image analysis: A review, IEEE Transactions on Biomedical Engineering 61 (5) (2014) 1400–1411. DOI: 10.1109/TBME.2014.2303852

M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, J. Kovacevic, Automated histology analysis: Opportunities for signal processing, IEEE Signal Processing Magazine 32 (1) (2015) 78–87. DOI: 10.1109/MSP.2014.2346443 URL: https://doi.org/10.1109/MSP.

2346443

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015) 436. URL:https://doi.org/10.1038/nature14539

Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new perspectives, IEEE transactions on pattern analysis and machine intelligence 35 (8) (2013) 1798–1828. URL:https://doi.

org/10.48550/arXiv.1206.5538

A. Cruz-Roa, A. Basavanhally, F. Gonz´alez, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, A. Madabhushi, Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks, in: Medical Imaging 2014: Digital Pathology, vol. 9041, International Society for Optics and Photonics, 904103, 2014. URL: https://doi.org/10.1117/12.

A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, F. A. G. Osorio, A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 403–410,2013. DOI: 10.1007/978-3-642-40763-5_50 URL:https://doi.

org/10.1109/tmi.2013.2275151

D. Ciresan, A. Giusti, L. M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images in: Advances in neural information process- ng systems, 2843–2851, 2012. URL: https://www.scopus.com/record/

display.uri?eid=2-s2.0-84877789057&origin=inward&txGid=

e4a8db0e08d215b9205bf86836c4c08

A. Esteva, B. Kuprel, S. Thrun, Deep networks for early-stage skin disease and skin cancer classification, Project Report, Stanford University.URL:https://doi.org/10.1038/nature21056

T. Chen, C. ChefdHotel, Deep learning based automatic immune cell detection for immunohistochemistry images, in: International Workshop on Machine Learning in Medical Imaging, Springer, 17–24, 2014. URL:https://doi.org/10.1007/978-3-31910581-9_3

N. Dhungel, G. Carneiro, A. P. Bradley, Deep learning and structured prediction for the segmentation of mass in mammograms, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 605–612,2015. URL: https://doi.org/10.1007/978-3-319-24553-9_74 DOI: 10.1007/978-3-319-24553-9_74

A. Kensert, P. J. Harrison, O. Spjuth, Transfer learning with deep convolutional neural network for classifying cellular morphological changes, bioRxiv (2018) 345728. DOI:10.1177/2472555218818756 URL:https://doi.org/10.1177/2472555218818756

S. Vesal, N. Ravikumar, A. Davari, S. Ellmann, A. Maier, Classification of breast cancer histology images using transfer learning, in: International Conference Image Analysis and Recognition, Springer, 812–819, 2018. DOI: org/10.48550/arXiv.

09424 URL:https://doi.org/10.48550/arXiv.1802.09424

Downloads

Published

26.03.2024

How to Cite

G. Divya Zion. (2024). Early Detection of Breast Cancer Using Gan and Resnet Emulsion Approach. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 4107 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6236

Issue

Section

Research Article