Development of Discrimination Techniques for the Detection of Single and Multicomponent Gas Mixture using Tin Oxide (SnO2) based Sensor Array

Authors

  • Madan Lal, Shalu C

Keywords:

Tin Oxide, Pattern Recognition, Artificial Neural Network, Sensor Array

Abstract

Tin oxide-based gas sensors have been widely used to detect single-target and multi-component gas mixtures in ambient atmospheres, utilizing sophisticated classification techniques such as Artificial Neural Networks (ANN). These techniques optimize pattern recognition, using sensor arrays formed by multiple commercially available sensors, like the TGS class from FIGARO, and Inc. The integration of ANN with these sensor arrays allows for the effective use of odor sensors, capable of processing data and extracting hidden information regarding the nature and concentrations of various gases, including toxic and residue components. The development and refinement of these discrimination techniques hold significant promise for advanced detection and identification of complex gas mixtures, potentially establishing SnO2-based sensor technology as a reliable and sophisticated method for gas analysis. Comparative analysis of discrimination techniques, including PCA, LDA, PLSR, SVM, and ANN, reveals that KNN regression outperforms gas concentration estimation.

Downloads

Download data is not yet available.

References

Ahrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the basis for digitalization: new approaches in instrumentation, IoT-concepts, and 5G. Internet of Things, 15, 100406.

Krishna, K. G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S., & Joshi, D. (2022). Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical, 341, 113578.

Staerz, A., Suzuki, T., Weimar, U., & Barsan, N. (2020). SnO2: The most important base material for semiconducting metal oxide-based materials. In Tin Oxide Materials, 345-377.

Bartolomé, J., Taeño, M., Vázquez-López, A., del Prado, F., García-Tecedor, M., Vásquez, G. C., & Maestre, D. (2020). Low-Dimensional Structures of In2O3, SnO2, and TiO2 with Applications of Technological Interest. In Oxide-Based Materials and Structures, 99-136.

Rzaij, J. M., Nawaf, S. O., & Ibrahim, A. K. (2022). A review on tin dioxide gas sensor: The role of the metal oxide doping, nanoparticles, and operating temperatures. World Journal of Advanced Research and Reviews, 14(1), 051-062.

Masuda, Y. (2022). Recent advances in SnO2 nanostructure-based gas sensors. Sensors and Actuators B: Chemical, 364, 131876.

Gaskov, A., Rumyantseva, M., & Marikutsa, A. (2020). Tin oxide nanomaterials: Active centers and gas sensor properties. In Tin Oxide Materials, 163-218.

Kong, Y., Li, Y., Cui, X., Su, L., Ma, D., Lai, T., & Wang, Y. (2022). SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Materials Science, 4(4), 339-350.

Zhang, D., Yang, Z., Yu, S., Mi, Q., & Pan, Q. (2020). Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coordination Chemistry Reviews, 413, 213272.

Mousavi, H., Mortazavi, Y., Khodadadi, A. A., Saberi, M. H., & Alirezaei, S. (2021). Enormous enhancement of Pt/SnO2 sensors response and selectivity by their reduction, to CO in automotive exhaust gas pollutants including CO, NOx, and C3H8. Applied Surface Science, 546, 149120

Bendahmane, B., Tomić, M., Touidjen, N. E. H., Gracia, I., Vallejos, S., & Mansour, F. (2020). Influence of Mg doping levels on the sensing properties of SnO2 films. Sensors, 20(7), 2158.

Mughal, A. S., Zawar, S., Ansar, M. T., Afzal, F., Murtaza, G., Atiq, S., & Ramay, S. M. (2022). Efficient electrochemical performance of hydrothermally synthesized mixed transition metal oxide nanostructures. Ionics, 28(5), 2469-2479.

Van Duy, N., Thai, N. X., Ngoc, T. M., Le, D. T. T., Hung, C. M., Nguyen, H., ... & Hoa, N. D. (2022). Design and fabrication of an effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sensors and Actuators B: Chemical, 351, 130979.

Zhang, B., Sun, J. Y., & Gao, P. X. (2021). Low-concentration NO x gas analysis using a single bimodular ZnO nanorod sensor. ACS sensors, 6(8), 2979-2987.

Jain, S., Presto, A. A., & Zimmerman, N. (2021). Spatial modeling of daily PM2. 5, NO2, and CO concentrations measured by a low-cost sensor network: comparison of linear, machine learning, and hybrid land use models. Environmental Science & Technology, 55(13), 8631-8641.

Shaposhnik, A. V., Moskalev, P. V., Chegereva, K. L., Zviagin, A. A., & Vasiliev, A. A. (2021). Selective gas detection of H2 and CO by a single MOX-sensor. Sensors and Actuators B: Chemical, 334, 129376.

Isaac, N. A., Pikaar, I., & Biskos, G. (2022). Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Microchimica Acta, 189(5), 196.

Amini, A., & Vafaei, M. (2020). Identifying binary mixtures of volatile organic compounds with isomeric components using a single thermal shock-induced generic SnO 2 gas sensor. IEEE Sensors Journal, 20(22), 13220-13228.

Kaushal, S., Nayi, P., Rahadian, D., & Chen, H. H. (2022). Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture, 12(9), 1359.

Rath, R. J., Farajikhah, S., Oveissi, F., Dehghani, F., & Naficy, S. (2023). Chemiresistive sensor arrays for gas/volatile organic compounds monitoring: a review. Advanced Engineering Materials, 25(3), 2200830.

Chen, H., Huo, D., & Zhang, J. (2022). Gas recognition in E-nose system: A review. IEEE Transactions on Biomedical Circuits and Systems, 16(2), 169-184.

Zarra, T., Galang, M. G. K., Ballesteros Jr, F. C., Belgiorno, V., & Naddeo, V. (2020). Instrumental odor monitoring system classification performance optimization by analysis of different pattern-recognition and feature extraction techniques. Sensors, 21(1), 114.

Wang, Z., Gao, D., Lei, X., Wang, D., & Gao, J. (2020). Machine learning-based seismic spectral attribute analysis to delineate a tight-sand reservoir in the Sulige gas field of central Ordos Basin, western China. Marine and Petroleum Geology, 113, 104136.

Yaqoob, U., & Younis, M. I. (2021). Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors, 21(8), 2877.

Tonezzer, M., Thi Thanh Le, D., Van Duy, L., Hoa, N. D., Gasperi, F., Van Duy, N., & Biasioli, F. (2022). Electronic noses based on metal oxide nanowires: A review. Nanotechnology Reviews, 11(1), 897-925.

Wang, X., Zhou, Y., Zhao, Z., Feng, X., Wang, Z., & Jiao, M. (2023). Advanced algorithms for low dimensional metal oxides-based electronic nose application: A review. Crystals, 13(4), 615.

Chu, J., Li, W., Yang, X., Wu, Y., Wang, D., Yang, A., & Rong, M. (2021). Identification of gas mixtures via sensor array combined with neural networks. Sensors and Actuators B: Chemical, 329, 129090.

Lee, J., Min, H., Choe, Y. S., Lee, Y. G., Kim, K., Lee, H. S., & Lee, W. (2023). Highly sensitive and selective detection of benzene, toluene, xylene, and formaldehyde using Au-coated SnO2 nanorod arrays for indoor air quality monitoring. Sensors and Actuators B: Chemical, 394, 134359.

Kim, S., Cho, D. H., Chang, H. K., Lee, H. N., Kim, H. J., Park, T. J., & Park, Y. M. (2022). Selective photoactive gas detection of CO and HCHO using highly porous SnO2 and SnO2@ TiO2 heterostructure. Sensors and Actuators B: Chemical, 358, 131486.

Li, Y., Guo, S., Wang, B., Sun, J., Zhao, L., Wang, T., & Lu, G. (2024). Machine learning‐assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in a wide relative humidity range. InfoMat, e12544.

Verma, J. K. S. D. K. (2021) Implementation of Artificial Neural Network for Detection of LPG through Pd-Doped SnO2 Based Thick Film Gas Sensor. IJSRD - International Journal for Scientific Research & Development Vol. 9, Issue 6.

Tombel, N. S. M., Zaki, H. F. M., & Fadglullah, H. F. M. (2023). Feature Extraction And Supervised Learning For Volatile Organic Compounds Gas Recognition. IIUM Engineering Journal, 24(2), 407-420.

Zang, C., Zhou, H., Ma, K., Yano, Y., Li, S., Yamahara, H., & Tabata, H. (2023). Electronic nose based on multiple electrospinning nanofibers sensor array and application in gas classification. Frontiers in Sensors, 4, 1170280.

Downloads

Published

12.06.2024

How to Cite

Madan Lal. (2024). Development of Discrimination Techniques for the Detection of Single and Multicomponent Gas Mixture using Tin Oxide (SnO2) based Sensor Array. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 1738–1745. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6473

Issue

Section

Research Article

Similar Articles

You may also start an advanced similarity search for this article.