A Review Analysis of Geometries, Welding Parameters, and Materials Used in Friction Stir Welding

Authors

  • Avinash B. Aher, Vijay Kumar Pandey, Makarand B. Shirke

Keywords:

Process parameters, FSW Tools, Weld angle, Axial force.

Abstract

A method of connecting dissimilar and similar materials together without melting them is called friction stir welding. It is extensively utilized in sectors including aerospace, automotive, marine, & railroads. This process involves combining different alloys like copper, zinc, magnesium, and aluminum. To achieve successful welds, factors like geometry and tool material, weld angle, axial force, Rotational speed and traverse speed are vital. Researchers have studied effects of these variables on welding results. This literature review aims to analyse welding variables, tool shapes, and materials in friction stir welding. It will be an important tool for research in the future that aims to increase the effectiveness of this welding process.

Downloads

Download data is not yet available.

References

B. Singh, K. K. Saxena, P. Singhal, and T. C. Joshi, “Role of Various Tool Pin Profiles in Friction Stir Welding of AA2024 Alloys,” J. Mater. Eng. Perform., vol. 30, no. 11, pp. 8606–8615, 2021, doi: 10.1007/s11665-021-06017-3.

M. M. Z. Ahmed, M. M. El-Sayed Seleman, D. Fydrych, and G. Çam, “Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review,” Materials (Basel)., vol. 16, no. 8, 2023, doi: 10.3390/ma16082971.

H. Kumar, “An Overview of Friction Stir Welding: A New Perspective,” no. June 2014, 2004.

V. S. Thete and V. L. Kadlag, “Effect of Process Parameters of Friction Stir Welded Joint for Similar Aluminium Alloys H30,” J. Eng. Res. Appl. www.ijera.com, vol. 5, no. 5, pp. 10–17, 2015, [Online]. Available: www.ijera.com

J. A. Al-Jarrah, S. Swalha, T. A. Mansour, M. Ibrahim, M. Al-Rashdan, and D. A. Al-Qahsi, “Optimization of friction stir welding parameters for joining Aluminum alloys using RSM,” Adv. Theor. Appl. Mech., vol. 6, no. 1, pp. 13–26, 2013, doi: 10.12988/atam.2013.222.

L. Dumpala and D. Lokanadham, “Low Cost Friction Stir Welding of Aluminium Nanocomposite – A Review,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1761–1769, 2014, doi: 10.1016/j.mspro.2014.07.206.

R. K. Bhushan and D. Sharma, “Investigation of mechanical properties and surface roughness of friction stir welded AA6061-T651,” Int. J. Mech. Mater. Eng., vol. 15, no. 1, 2020, doi: 10.1186/s40712-020-00119-x.

K. Elangovan and V. Balasubramanian, “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy,” J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 163–175, 2008, doi: 10.1016/j.jmatprotec.2007.09.019.

K. Elangovan and V. Balasubramanian, “Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy,” Mater. Des., vol. 29, no. 2, pp. 362–373, 2008, doi: 10.1016/j.matdes.2007.01.030.

X. He, F. Gu, and A. Ball, “A review of numerical analysis of friction stir welding,” Prog. Mater. Sci., vol. 65, pp. 1–66, 2014, doi: 10.1016/j.pmatsci.2014.03.003.

C. Reads, “THE IMPORTANCE OF FRICTION STIR WELDING Ákos Meilinger , Imre Török,” no. April, pp. 24–34, 2021.

D. Bakavos and P. B. Prangnell, “Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet,” Sci. Technol. Weld. Join., vol. 14, no. 5, pp. 443–456, 2009, doi: 10.1179/136217109X427494.

P. A. Colegrove and H. R. Shercliff, “Development of Trivex friction stir welding tool Part 1 - Two-dimensional flow modelling and experimental validation,” Sci. Technol. Weld. Join., vol. 9, no. 4, pp. 345–351, 2004, doi: 10.1179/136217104225021670.

P. A. Colegrove and H. R. Shercliff, “Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds,” Sci. Technol. Weld. Join., vol. 8, no. 5, pp. 360–368, 2003, doi: 10.1179/136217103225005534.

H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Mater. Sci. Eng. A, vol. 419, no. 1–2, pp. 25–31, 2006, doi: 10.1016/j.msea.2005.11.045.

Y. H. Yin, N. Sun, T. H. North, and S. S. Hu, “Influence of tool design on mechanical properties of AZ31 friction stir spot welds,” Sci. Technol. Weld. Join., vol. 15, no. 1, pp. 81–86, 2010, doi: 10.1179/136217109X12489665059384.

K. Kumar, S. V. Kailas, and T. S. Srivatsan, “Influence of tool geometry in friction stir welding,” Mater. Manuf. Process., vol. 23, no. 2, pp. 188–194, 2008, doi: 10.1080/10426910701774734.

C. D. Sorensen and A. L. Stahl, “Experimental measurements of load distributions on friction stir weld pin tools,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 38, no. 3, pp. 451–459, 2007, doi: 10.1007/s11663-007-9041-6.

H. Atharifar, D. Lin, and R. Kovacevic, “Numerical and experimental investigations on the loads carried by the tool during friction stir welding,” J. Mater. Eng. Perform., vol. 18, no. 4, pp. 339–350, 2009, doi: 10.1007/s11665-008-9298-1.

H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, “Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets,” Int. J. Mach. Tools Manuf., vol. 49, no. 11, pp. 814–823, 2009, doi: 10.1016/j.ijmachtools.2009.06.001.

S. M. Chowdhury, D. L. Chen, S. D. Bhole, and X. Cao, “Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch,” Mater. Sci. Eng. A, vol. 527, no. 21–22, pp. 6064–6075, 2010, doi: 10.1016/j.msea.2010.06.012.

N. A. Rodriguez, E. Almanza, C. J. Alvarez, and L. E. Murr, “Study of friction stir welded A319 and A413 aluminum casting alloys,” J. Mater. Sci., vol. 40, no. 16, pp. 4307–4312, 2005, doi: 10.1007/s10853-005-2837-3.

G. Padmanaban and V. Balasubramanian, “Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy - An experimental approach,” Mater. Des., vol. 30, no. 7, pp. 2647–2656, 2009, doi: 10.1016/j.matdes.2008.10.021.

A. Scialpi, L. A. C. De Filippis, and P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy,” Mater. Des., vol. 28, no. 4, pp. 1124–1129, 2007, doi: 10.1016/j.matdes.2006.01.031.

X. Cao and M. Jahazi, “Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy,” Mater. Des., vol. 32, no. 1, pp. 1–11, 2011, doi: 10.1016/j.matdes.2010.06.048.

O. Lorrain, V. Favier, H. Zahrouni, and D. Lawrjaniec, “Understanding the material flow path of friction stir welding process using unthreaded tools,” J. Mater. Process. Technol., vol. 210, no. 4, pp. 603–609, 2010, doi: 10.1016/j.jmatprotec.2009.11.005.

P. Prakash, S. Kumar Jha, and S. P. Lal, “a Study of Process Parameters of Friction Stir Welded Aa 061 Aluminum Alloy,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 2, no. 6, pp. 2304–2309, 2013.

Downloads

Published

12.06.2024

How to Cite

Avinash B. Aher. (2024). A Review Analysis of Geometries, Welding Parameters, and Materials Used in Friction Stir Welding. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 2156 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6561

Issue

Section

Research Article