A Survey on Liver Lesion Detection Using CT Images- Current Techniques and Future Perspectives

Authors

  • Trupti M. Kodinariya, Nikhil Gondaliya, Nirali N. Madhak

Keywords:

Computer aided diagnosis (CAD) system, Computed tomography, Contour-Based Segmentation , Deep learning,, Liver segmentation, , Machine Learning, Region Based Segmentation.

Abstract

Liver disease represents a significant global public health issue, with early detection playing a crucial role in the effective treatment and management of the condition. The utilization of Computed Tomography (CT) imaging has become increasingly important in liver detection, providing high-resolution images that facilitate precise diagnosis. Clinicians commonly seek information regarding the liver's shape for treatment planning in order to minimize harm to surrounding healthy tissues and hepatic vessels, underscoring the importance of developing a geometric model of the liver. Various methods for liver image segmentation have been developed over time. This article presents a thorough examination of Traditional segmentation techniques such as thresholding, region-based growing algorithm, Contour-based algorithm, as well as Machine Learning (ML) and Deep Learning (DL) methods for Segmentation utilizing CT images, shedding light on the different techniques, algorithms, and challenges associated with this domain. We explore diverse approaches to liver segmentation, assess the efficacy of different methods using established metrics, and conclude by outlining potential avenues for future research.

DOI: https://doi.org/10.17762/ijisae.v12i23S.6849

Downloads

Download data is not yet available.

References

Todoroki, Yoshihiro, et al. "Detection of liver tumor candidates from CT images using deep convolutional neural networks." International Conference on Innovation in Medicine and Healthcare. Springer, Cham, 2017.

H. Rumgay and et al., “Global burden of primary liver cancer in 2020 and predictions to 2040,” Journal of Hepatology, 2022

V. Chernyak and et al., “Liver imaging reporting and data system (li-rads) version 2018: Imaging of hepatocellular carcinoma in at- risk patients,” Radiology, vol. 289, no. 3, pp. 816–830, 2018, pMID: 30251931.

Nazish, Khan., Imran, Ahmed., Mahreen, Kiran., Hamoodur, Rehman., Sadia, Din., Anand, Paul., Alavalapati, Goutham, Reddy. "Automatic segmentation of liver & lesion detection using H-minima transform and connecting component labeling." Multimedia Tools and Applications, (2020. doi: 10.1007/S11042-019-7347-4

Deepesh, Edwin., S., Hariharan. "Liver and tumour segmentation from abdominal CT images using adaptive threshold method." International Journal of Biomedical Engineering and Technology, (2016). doi: 10.1504/IJBET.2016.077183

Lamia, Nabil, Mahdy., Lamia, Nabil, Mahdy., Kadry, Ali, Ezzat., Kadry, Ali, Ezzat., Mohamed, A., Torad., Aboul, Ella, Hassanien. "Automatic segmentation system for liver tumors based on the multilevel thresholding and electromagnetism optimization algorithm." International Journal of Imaging Systems and Technology, (2020). doi: 10.1002/IMA.22432

Tugce, Sena, Avsar., Sami, Arica. "Automatic Segmentation of Computed Tomography Images of Liver Using Watershed and Thresholding Algorithms." (2017). doi: 10.1007/978-981-10-5122-7_104

Jana, Lipkova., Markus, Rempfler., Patrick, Ferdinand, Christ., John, Lowengrub., Bjoern, H., Menze. "Automated Unsupervised Segmentation of Liver Lesions in CT scans via Cahn-Hilliard Phase Separation.." arXiv: Computer Vision and Pattern Recognition, (2017).

Shima, Rafiei., Nader, Karimi., Behzad, Mirmahboub., Kayvan, Najarian., Banafsheh, Felfeliyan., Shadrokh, Samavi., S., M., Reza, Soroushmehr. "Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing." (2019). doi: 10.1109/EMBC.2019.8857835

Shaimaa, A., Elmorsy., Mohamed, A., Abdou., Yasser, F., Hassan., Ashraf, Elsayed. "K3. A region growing liver segmentation method with advanced morphological enhancement." (2015). doi: 10.1109/NRSC.2015.7117857

Abdalla, Mostafa., Mohamed, Abd, Elfattah., Ahmed, Fouad., Aboul, Ella, Hassanien., Hesham, A., Hefny. "Enhanced Region Growing Segmentation for CT Liver Images." (2016). doi: 10.1007/978-3-319-26690-9_11

Puteri, Suhaiza, Sulaiman., Rahmita, Wirza, O., K., Rahmat., Ramlan, Mahmod., Abdul, Rashid. "An automatic segmentation of liver colume that contained disconnected region with dynamic local neighbourhood region sizes." (2016). doi: 10.33736/JITA.39.2010

Bin, Chen., Yang, Chen., Guanyu, Yang., Jingyu, Meng., Rui, Zeng., Limin, Luo. "Segmentation of liver tumor via nonlocal active contours." (2015). doi: 10.1109/ICIP.2015.7351504

Yanfeng, Shang., Yanfeng, Shang., Aneta, Markova., R., Deklerck., Edgard, Nyssen., Xin, Yang., Johan, De, Mey. "Liver segmentation by an active contour model with embedded Gaussian mixture model based classifiers." Proceedings of SPIE, (2010). doi: 10.1117/12.855050

Qianqian, Pan., Liwei, Zhang., Li, Xia., Hongzhi, Wang., Hai, Li. "Liver tumor segmentation based on level set." (2018). doi: 10.1117/12.2502810

Moti, Freiman., Ofer, Eliassaf., Yoav, Taieb., Leo, Joskowicz., Jacob, Sosna. "A Bayesian Approach for Liver Analysis: Algorithm and Validation Study." (2008). doi: 10.1007/978-3-540-85988-8_11

Xing, Zhang., Jie, Tian., Dehui, Xiang., Xiuli, Li., Kexin, Deng. "Interactive liver tumor segmentation from ct scans using support vector classification with watershed." (2011). doi: 10.1109/IEMBS.2011.6091484

Mohammed Goryawala., Seza, A., Gulec., Ruchir, Bhatt., Anthony, J., McGoron., Malek, Adjouadi. "A Low-Interaction Automatic 3D Liver Segmentation Method Using Computed Tomography for Selective Internal Radiation Therapy." BioMed Research International, (2014). doi: 10.1155/2014/198015

Eugene Vorontsov., Nadine Abi-Jaoudeh., Samuel Kadoury. "Metastatic Liver Tumor Segmentation Using Texture-Based Omni-Directional Deformable Surface Models." (2014). doi: 10.1007/978-3-319-13692-9_7

Abdalla Mostafa., Ahmed, Fouad., Mohamed, Abd, Elfattah., Aboul, Ella, Hassanien., Hesham, A., Hefny. "Artificial Bee Colony Based Segmentation for CT Liver Images." (2016). doi: 10.1007/978-3-319-33793-7_18

Maklad, A. S., Matsuhiro, M., Suzuki, H., Kawata, Y., Niki, N., Moriyama, N., Shimada, M.. “Blood vessel-based liver segmentation through the portal phase of a CT dataset”. Medical Imaging 2013: Computer-Aided Diagnosis.

Ben-Cohen A., Diamant I., Klang E., Amitai M., Greenspan H. , “Fully Convolutional Network for Liver Segmentation and Lesions Detection”. In: Carneiro G. et al. (eds) Deep Learning and Data Labeling for Medical Applications. DLMIA 2016, LABELS 2016. Lecture Notes in Computer Science, vol 10008, 2016 . Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_9

Christ, P.F., Elshaer, M.E., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., D'Anastasi, M., Sommer, W.H., Ahmadi, S., & Menze, B.H. Automatic “Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields”. MICCAI 2016. DOI:10.1007/978-3-319-46723-8_48

Wen Li, Fucang Jia, Qingmao Hu. “Automatic Segmentation of Liver Tumor in CT Images with Deep Convolutional Neural Networks”. Journal of Computer and Communications, Vol.3 No.11, 2015. DOI: 10.4236/jcc.2015.311023

Han, X., “Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method”.2017, ArXiv, abs/1704.07239.

X. Li, H. Chen, X. Qi, Q. Dou, C. -W. Fu and P. -A. Heng,, “H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes”, in IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663-2674, 2018. doi: 10.1109/TMI.2018.2845918.

H. Jiang, T. Shi, Z. Bai and L. Huang, “AHCNet: An Application of Attention Mechanism and Hybrid Connection for Liver Tumor Segmentation in CT Volumes”, in IEEE Access, vol. 7, pp. 24898-24909,2019, doi: 10.1109/ACCESS.2019.2899608

Yuwei Pang, Dong Hu, and Min Sun., “ A modified scheme for liver tumor segmentation based on cascaded FCNs”. In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC '19). Association for Computing Machinery, New York, NY, USA, Article 10, 1–6., 2019. DOI :https://doi.org/10.

/3371425.3371451

A. Albishri, S. J. H. Shah and Y. Lee, “CU-Net: Cascaded U-Net Model for Automated Liver and Lesion Segmentation and Summarization”, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019, pp. 1416-1423, doi: 10.1109/BIBM47256.2019.8983266.

H. Seo, C. Huang, M. Bassenne, R. Xiao and L. Xing, “Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images”, in IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1316-1325, 2020. doi:10.1109/TMI.2019.2948320.

X. Xi, L. Wang, V. S. Sheng, Z. Cui, B. Fu and F. Hu , “Cascade U-ResNets for Simultaneous Liver and Lesion Segmentation”, in IEEE Access, vol. 8, pp. 68944-68952, 2020. doi: 10.1109/ACCESS.2020.2985671.

CIR dataset (2016) www.cancerimagingarchive.net. Accessed 1 Feb 2017

IRCAD dataset (2016) www.ircad.fr/research/3dircadb/. Accessed 1 Feb 2017

MIDAS dataset (2016) www.insight-journal.org/midas/collection/

view/38. Accessed 1 Feb 2017

Sliver07 dataset (2016) www.Sliver07.org/. Accessed 1 Feb 2017

Downloads

Published

06.08.2024

How to Cite

Trupti M. Kodinariya. (2024). A Survey on Liver Lesion Detection Using CT Images- Current Techniques and Future Perspectives. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 375 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6849

Issue

Section

Research Article