From Reactive to Proactive: Enhancing industrial machine Maintenance through intelligent fault detection and Diagnosis

Authors

  • Ahmed H. Ali

Keywords:

Feature Engineering, Machine learning, Industrial Machinery, Proactive Maintenance

Abstract

The research on enhancing maintenance of industrial machines through intelligent fault detection and diagnosis aims to identify the use of machine learning algorithms and data analysis techniques to develop accurate and reliable fault detection and diagnosis models for industrial machines. Determine the effective implementation of fault detection and diagnosis systems in industrial machinery maintenance to move from reactive to proactive maintenance practices. Identify the most important challenges and obstacles facing organizations in adopting smart systems to detect and diagnose faults to enhance the maintenance of industrial machines using artificial intelligence and machine learning algorithms. The methodology for enhancing industrial machinery maintenance through Intelligent Fault Detection and Diagnosis (IFDD) involves obtaining relevant data from various sources, including sensors, machine control systems or historians and historical maintenance records. This data collection process is critical to implementing effective IFDD techniques and proactive maintenance strategies. 4,200 samples were split 70/30 for training and testing, with comparisons performed using 4 deep learning models and 2 machine learning models with manual feature extraction. Deep learning models showed superior accuracy, achieving up to 100% accuracy, while machine learning models were less accurate in the 94-95% range. This confirms the effectiveness of deep learning in automatically extracting meaningful features, eliminating the need for manual feature engineering.

Downloads

Download data is not yet available.

References

Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31-57.‏

https://doi.org/10.3926/jiem.3597

Abualsauod, E. H. (2023). Machine learning based fault detection approach to enhance quality control in smart manufacturing. Production Planning & Control, 1-9.‏

https://doi.org/10.1080/09537287.2023.2175736

Yan, W., Wang, J., Lu, S., Zhou, M., & Peng, X. (2023). A Review of Real-Time Fault Diagnosis Methods for Industrial Smart Manufacturing. Processes, 11(2), 369.‏

https://doi.org/10.3390/pr11020369

Tang, S., Yuan, S., & Zhu, Y. (2019). Deep learning-based intelligent fault diagnosis methods toward rotating machinery. Ieee Access, 8, 9335-9346.‏

http://dx.doi.org/10.1109/ACCESS.2019.2963092

Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., & Lim, M. H. (2019). Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review. Ieee Access, 7, 122644-122662.‏

http://dx.doi.org/10.1109/ACCESS.2019.2938227

Velasco-Gallego, C., & Lazakis, I. (2022). RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery. Expert Systems with Applications, 204, 117634.‏

https://doi.org/10.1016/j.eswa.2022.117634

Yunusa-Kaltungo, A., Sinha, J. K., & Nembhard, A. D. (2015). A novel fault diagnosis technique for enhancing maintenance and reliability of rotating machines. Structural Health Monitoring, 14(6), 604-621.‏

https://doi.org/10.1177/1475921715604388

Zhang, Z. (2014). Data mining approaches for intelligent condition-based maintenance: a framework of intelligent fault diagnosis and prognosis System (IFDPS).‏

http://hdl.handle.net/11250/240971

Chew, M. Y. L., & Yan, K. (2022). Enhancing interpretability of data-driven fault detection and diagnosis methodology with maintainability rules in smart building management. Journal of Sensors, 2022, 1-48.‏

http://dx.doi.org/10.1155/2022/5975816

Wang, K. S. (2014). Key techniques in intelligent predictive maintenance (IPdM)–a framework of intelligent faults diagnosis and prognosis system (IFDaPS). Advanced Materials Research, 1039, 490-505.‏

http://dx.doi.org/10.4028/www.scientific.net/AMR.1039.490

Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33-47.‏

http://dx.doi.org/10.1016/j.ymssp.2018.02.016

Akbar, S., Vaimann, T., Asad, B., Kallaste, A., Sardar, M. U., & Kudelina, K. (2023). State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions. Energies, 16(17), 6345.‏

https://doi.org/10.3390/en16176345

Dai, X., & Gao, Z. (2013). From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. IEEE Transactions on Industrial Informatics, 9(4), 2226-2238.‏

http://dx.doi.org/10.1109/TII.2013.2243743

AlShorman, O., Irfan, M., Saad, N., Zhen, D., Haider, N., Glowacz, A., & AlShorman, A. (2020). A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor. Shock and vibration, 2020, 1-20.‏

https://doi.org/10.1155/2020/8843759

Verma, A. K., Nagpal, S., Desai, A., & Sudha, R. (2021). An efficient neural-network model for real-time fault detection in industrial machine. Neural Computing and Applications, 33, 1297-1310.‏

https://doi.org/10.1007/s00521-020-05033-z

Tran, M. Q., Elsisi, M., Mahmoud, K., Liu, M. K., Lehtonen, M., & Darwish, M. M. (2021). Experimental setup for online fault diagnosis of induction machines via promising IoT and machine learning: Towards industry 4.0 empowerment. IEEE access, 9, 115429-115441.‏

http://dx.doi.org/10.1109/ACCESS.2021.3105297

Choudhary, A., Goyal, D., Shimi, S. L., & Akula, A. (2019). Condition monitoring and fault diagnosis of induction motors: A review. Archives of Computational Methods in Engineering, 26, 1221-1238.‏

http://dx.doi.org/10.1007/s11831-018-9286-z

Lee, J., Ni, J., Singh, J., Jiang, B., Azamfar, M., & Feng, J. (2020). Intelligent maintenance systems and predictive manufacturing. Journal of Manufacturing Science and Engineering, 142(11), 110805.‏

http://dx.doi.org/10.1115/1.4047856

Zhang, X., Rane, K. P., Kakaravada, I., & Shabaz, M. (2021). Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology. Nonlinear Engineering, 10(1), 245-254.‏

http://dx.doi.org/10.1515/nleng-2021-0019

Wang, X., Liu, M., Liu, C., Ling, L., & Zhang, X. (2023). Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing. Expert Systems with Applications, 234, 121136.‏

https://doi.org/10.1016/j.eswa.2023.121136

Turner, C. J., Emmanouilidis, C., Tomiyama, T., Tiwari, A., & Roy, R. (2019). Intelligent decision support for maintenance: an overview and future trends. International Journal of Computer Integrated Manufacturing, 32(10), 936-959.‏

https://doi.org/10.1080/0951192x.2019.1667033

Henao, H., Capolino, G. A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., ... & Hedayati-Kia, S. (2014). Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE industrial electronics magazine, 8(2), 31-42.‏

http://dx.doi.org/10.1109/MIE.2013.2287651

Mbilong, P. M., Aarab, Z., Belouadha, F. Z., & Kabbaj, M. I. (2023). Enhancing Fault Detection in CNC Machinery: A Deep Learning and Genetic Algorithm Approach. Ingénierie des Systèmes d'Information, 28(5).‏

https://doi.org/10.18280/isi.280525

Khalid, S., Song, J., Raouf, I., & Kim, H. S. (2023). Advances in fault detection and diagnosis for thermal power plants: A review of intelligent techniques. Mathematics, 11(8), 1767.‏

https://doi.org/10.3390/math11081767

Han, T., Liu, C., Yang, W., & Jiang, D. (2020). Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application. ISA transactions, 97, 269-281.‏

https://doi.org/10.48550/arXiv.1804.07265

Choudhary, A., Goyal, D., Shimi, S. L., & Akula, A. (2019). Condition monitoring and fault diagnosis of induction motors: A review. Archives of Computational Methods in Engineering, 26, 1221-1238.‏

http://dx.doi.org/10.1007/s11831-018-9286-z

Zayed, S. M., Attiya, G., El-Sayed, A., Sayed, A., & Hemdan, E. E. D. (2023). An Efficient Fault Diagnosis Framework for Digital Twins Using Optimized Machine Learning Models in Smart Industrial Control Systems. International Journal of Computational Intelligence Systems, 16(1), 69.‏

https://doi.org/10.1007/s44196-023-00241-6

Precup, R. E., Angelov, P., Costa, B. S. J., & Sayed-Mouchaweh, M. (2015). An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Computers in Industry, 74, 75-94.‏

http://dx.doi.org/10.1016/j.compind.2015.03.001

Wang, H., Li, S., Song, L., Cui, L., & Wang, P. (2019). An enhanced intelligent diagnosis method based on multi-sensor image fusion via improved deep learning network. IEEE Transactions on Instrumentation and measurement, 69(6), 2648-2657.‏

http://dx.doi.org/10.1109/TIM.2019.2928346

Jieyang, P., Kimmig, A., Dongkun, W., Niu, Z., Zhi, F., Jiahai, W., ... & Ovtcharova, J. (2023). A systematic review of data-driven approaches to fault diagnosis and early warning. Journal of Intelligent Manufacturing, 34(8), 3277-3304.‏

http://dx.doi.org/10.1007/s10845-022-02020-0

Vaimann, T., Antonino-Daviu, J. A., & Rassõlkin, A. (2023). Novel Approaches to Electrical Machine Fault Diagnosis. Energies, 16(15), 5641.‏

https://doi.org/10.3390/en16155641

Xu, Z., Bashir, M., Zhang, W., Yang, Y., Wang, X., & Li, C. (2022). An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion. Information Fusion, 86, 17-29.‏

http://dx.doi.org/10.1016/j.inffus.2022.06.005

Hodavand, F., Ramaji, I. J., & Sadeghi, N. (2023). Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings, 13(6), 1426.‏

https://doi.org/10.3390/buildings13061426

Leite, D., Martins Jr, A., Rativa, D., De Oliveira, J. F., & Maciel, A. M. (2022). An automated machine learning approach for real-time fault detection and diagnosis. Sensors, 22(16), 6138.‏

https://doi.org/10.3390/s221661

Downloads

Published

12.06.2024

How to Cite

Ahmed H. Ali. (2024). From Reactive to Proactive: Enhancing industrial machine Maintenance through intelligent fault detection and Diagnosis . International Journal of Intelligent Systems and Applications in Engineering, 12(4), 4029–4039. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6969

Issue

Section

Research Article