Optimizing Performance and Security in Information Systems by Adopting Artificial Intelligence and Data Analysis
Keywords:
Optimization, Information Systems, Wireless Networks, Performance, Security, Artificial Intelligence; Machine Learning; Deep LearningAbstract
The use of artificial intelligence (AI) techniques and deep learning based on data analysis for the design and management of emerging communication networks is justified by the increasing complexity of communication systems, conditioned by the diversity of technologies, services, and use cases with different technical requirements. This study is a documentary review that describes the usefulness of artificial intelligence and data analysis to improve both performance and security in information systems, presenting a trend in the present day of countless scientific contributions of AI and its application in wireless communication systems. Traditionally, the classical way of studying improvement has focused on the performance of wireless transceivers under the paradigm of dividing and conquering signals. The paradigm shift comes from artificial intelligence, which has been used to improve real-time wireless communication by analyzing previous data and user preferences. In addition to combining information security with its overall capabilities for risk management, virus prevention, and intrusion detection, it is intended to establish that by unlocking the potential of a wireless network orchestrated by the use of AI, it is possible to maximize resource use and minimize costs, requiring access to and analysis of large amounts of network data. Therefore, continuous updating of data is important for building successful and efficient wireless communication systems.
Downloads
References
Bailey, DE, & Barley, SR, “Beyond design and use: How scholars should study intelligent technologies,” Information and Organization, vol. 30, no. 2, pp. 1-12, December 6, 2020. doi: https://doi.org/10.1016/j.infoandorg.2019.100286. Available at: https://tmp.ucsb.edu/research/beyond-design-and-use-how-scholars-should-study-intelligent-technologies.
Sarker, S., Chatterjee, S., Xiao, X., & Elbanna, A., “The sociotechnical axis of cohesion for the IS discipline: Its historical legacy and its continued relevance,” MIS Quarterly, vol. 43, no. 3, pp. 695-719, 2019. doi:10.25300/MISQ/2019/13747. Available at: https://www.academia.edu/47942609/The_Sociotechnical_Axis_of_Cohesion_for_the_IS_Discipline_Its_Historical_Legacy_and_its_Continued_Relevance
Teodorescu, MHM, Morse, L., Awwad, Y., & Kane, GC, “Failures of fairness in automation require a deeper understanding of human-ML augmentation.,” MIS Quarterly, vol. 45, no. 3, pp. 1483-1500, 2021. doi:10.25300/MISQ/2021/16535. Available at: https://www.researchgate.net/publication/354625563_Failures_of_Fairness_in_Automation_Require_a_Deeper_Understanding_of_Human-ML_Augmentation.
Zappone, A.; Di Renzo, M.; Debbah, M.; Lam, T.T.; Qian, X., “Model-Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for Wireless System Optimization.,” IEEE Vehicular Technology Magazine., vol. 14, no. 3, p. 60–69, July 18, 2019. doi:10.1109/MVT.2019.2921627. Available at: https://ieeexplore.ieee.org/document/8765703
Wang, T.; Wen, C.K.; Wang, H.; Gao, F.; Jiang, T.; Jin, S., “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. November, vol. 14, no. 11, pp. 92-111, November 2017. doi:10.1109/CC.2017.8233654. Available at: https://ieeexplore.ieee.org/document/8604101.
Qin, Z.; Ye, H.; Li, G.Y.; Juang, BHF, “Deep Learning in Physical Layer Communications,” IEEE Wireless Communications, vol. 26, no. 2, p. 93–99, April 2019. doi:10.1109/MWC.2019.1800601. Available at: https://ieeexplore.ieee.org/document/8663966.
Zhang, C.; Ueng, Y.L.; Studer, C.; Burg, A., “Artificial Intelligence for 5G and Beyond 5G: Implementations, Algorithms, and Optimizations,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, p. 149–163, June 4, 2020. doi:10.1109/JETCAS.2020.3000103. Available at: https://ieeexplore.ieee.org/document/9108219.
Ye, H.; Li, G.Y.; Juang, BH, “Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems,” IEEE Wirel. Commun. Lett., vol. 7, no. 1, p. 114–117, February 2018. doi:10.1109/LWC.2017.2757490. Available at: https://ieeexplore.ieee.org/document/8052521.
He, H.; Wen, C.K.; Jin, S.; Li, GY, “Model-Driven Deep Learning for MIMO Detection,” IEEE Transactions on Signal Processing, vol. 68, p. 1702–1715, February 28, 2020. doi:10.1109/TSP.2020.2976585. Available at: https://ieeexplore.ieee.org/document/9018199/.
Shlezinger, N.; Eldar, Y.C. Farsad, N.; Goldsmith, AJ, “ViterbiNet: Symbol Detection Using a Deep Learning Based Viterbi Algorithm,” In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), p. 1–5, 02-05 July 2019. doi:10.1109/SPAWC.2019.8815457. Available at: https://ieeexplore.ieee.org/document/8815457.
Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H., “Deep Learning-Based Channel Estimation,” IEEE Communications Letters, vol. 23, no. 4, p. 652–655, April 2019. doi:10.1109/LCOMM.2019.2898944. Available at: https://ieeexplore.ieee.org/document/8640815.
Burse, K.; Yadav, R.N.; Shrivastava, S.C., “Channel Equalization Using Neural Networks: A Review.,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 3, p. 352–357, May 2010. Available at: https://ieeexplore.ieee.org/document/5406124
Wen, C.K.; Shih, W.T.; Jin, S., “Deep Learning for Massive MIMO CSI Feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, p. 748–751, March 22, 2018. doi:10.1109/LWC.2018.2818160. Available at: https://ieeexplore.ieee.org/document/8322184
Yang, Y.; Gao, F.; Li, G.Y.; Jian, M., “Deep Learning-Based Downlink Channel Prediction for FDD Massive MIMO System,” IEEE Communications Letters, vol. 23, no. 11, p. 1994–1998, August 13, 2019. doi:10.1109/LCOMM.2019.2934851. Available at: https://ieeexplore.ieee.org/document/8795533.
Arnold, M.; Dorner, S.; Cammerer, S.; Hoydis, J.; ten Brink, S., “Towards Practical FDD Massive MIMO: CSI Extrapolation Driven by Deep Learning and Actual Channel Measurements,” 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1972-1976, 03-06 November 2019. doi:10.1109/IEEECONF44664.2019.9048863. Available at: https://ieeexplore.ieee.org/document/9048863
Jiang, W.; Schotten, H.D., “Multi-Antenna Fading Channel Prediction Empowered by Artificial Intelligence,” In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), p. 1–6, August 27-30, 2018. doi:10.1109/VTCFall.2018.8690550. Available at: https://ieeexplore.ieee.org/document/8690550
Gruber, T.; Cammerer, S.; Hoydis, J.; Brink, St, "On deep learning-based channel decoding," In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), pp. 1-6, March 22-24, 2017. doi:10.1109/CISS.2017.7926071. Available in: https://ieeexplore.ieee.org/document/7926071.
Cammerer, S.; Gruber, T.; Hoydis, J.; ten Brink, S., “Scaling Deep Learning-Based Decoding of Polar Codes via Partitioning,” In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, pp. 1-6, 4-8 December 2017. doi:10.1109/GLOCOM.2017.8254811. Available in: https://ieeexplore.ieee.org/document/8254811.
He, Y.; Zhang, J.; Jin, S.; Wen, C.K.; Li, GY, “Model-Driven DNN Decoder for Turbo Codes: Design, Simulation, and Experimental Results,” IEEE Transactions on Communications, vol. 68, no. 10, p. 6127–6140, July 21, 2020. doi:10.1109/TCOMM.2020.3010964. Available in: https://ieeexplore.ieee.org/document/9018199/.
Blanquez-Casado, F.; Aguayo Torres, MdC; Gomez, G., "Link Adaptation Mechanisms Based on Logistic Regression Modeling," IEEE Communications Letters, vol. 23, no. 5, p. 942–945, May 2019. doi:10.1109/LCOMM.2019.2903045. Available in: https://ieeexplore.ieee.org/document/8661615.
Luo, FL, Machine Learning for Future Wireless Communications, F. Luo, Ed., Hoboken, NJ: John Wiley & Sons Ltd., 2020. Available at: https://books.google.co.ve/books?hl=es&lr=&id=GFTGDwAAQBAJ&oi=fnd&pg=PR15&ots=rW9cmv6i2J&sig=bThxCjehYDRnDHvOM4oQx5hgBx8&redir_esc=y#v=onepage&q&f=false
Liaskos, C.; Nor is.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I., “A New Wireless Communication Paradigm through Software-Controlled Metasurfaces,” IEEE Communications Magazine, vol. 56, no. 9, p. 162–169, September 16, 2018. doi:10.1109/MCOM.2018.1700659. Available in: https://ieeexplore.ieee.org/document/8466374.
Elbir, AM; Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S., “Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems,” IEEE Wireless Communications Letters, vol. 9, no. 9, p. 1447–1451, September 2020. doi:10.1109/LWC.2020.2993699. Available in: https://ieeexplore.ieee.org/document/9090876.
Taha, A.; Alrabeiah, M.; Alkhateeb, A., “Enabling Large Intelligent Surfaces With Compressive Sensing and Deep Learning,” IEEE Access, vol. 9, p. 44304–44321, 04 March 2021. doi:10.1109/ACCESS.2021.3064073. Available in: https://ieeexplore.ieee.org/document/9370097.
Thilina, K.M.; Choi, K.W.; Saquib, N.; Hossain, E., “Machine Learning Techniques for Cooperative Spectrum Sensing in Cognitive Radio Networks,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 11, p. 2209–2221, 2013. doi:10.1109/JSAC.2013.131120. Available in: https://ieeexplore.ieee.org/document/6635250.
Wang, Y.; Liu, M.; Yang, J.; Gui, G., “Data-Driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, p. 4074–4077, March 2019. doi:10.1109/TVT.2019.2891291. Available in: https://ieeexplore.ieee.org/document/8604101.
Ahmed, K.I.; Tabassum, H.; Hossain, E., “Deep Learning for Radio Resource Allocation in Multi-Cell Networks,” IEEE Network, vol. 33, no. 6, p. 188–195, April 22, 2019. doi:10.1109/MNET.2019.1900029. Available in: https://ieeexplore.ieee.org/document/8694788.
Ghadimi, E.; Davide Calabrese, F.; Peters, G.; Soldati, P., “A reinforcement learning approach to power control and rate adaptation in cellular networks,” In Proceedings of the 2017 IEEE International Conference on Communications (ICC), pp. 1938-1883, May 21–25, 2017. doi:10.1109/ICC.2017.7997440. Available in: https://ieeexplore.ieee.org/document/7997440.
Sun, H.; Chen, X.; Shi, Q.; Hong, M.; Fu, X.; Sidiropoulos, ND, “Learning to Optimize: Training Deep Neural Networks for Interference Management,” IEEE Transactions on Signal Processing, vol. 66, no. 20, p. 5438–5453, August 23, 2018. doi:10.1109/TSP.2018.2866382. Available at: https://ieeexplore.ieee.org/document/8444648.
Challita, U.; Dong, L.; Saad, W., “Proactive Resource Management for LTE in Unlicensed Spectrum: A Deep Learning Perspective,” IEEE Transactions on Wireless Communications, vol. 17, no. 7, p. 4674–4689, July 2018. doi:10.1109/TWC.2018.2829773. Available in: https://ieeexplore.ieee.org/document/8359094.
Bonati, L.; d'oro, S.; Polese, M.; Basagni, S.; Melodia, T., “Intelligence and Learning in O-RAN for Data-driven NextG Cellular Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21-27, October 2021. doi:10.1109/MCOM.101.2001120. Available in: https://ieeexplore.ieee.org/abstract/document/9627832.
Zhou, P.; Fang, X.; Wang, X.; Long, Y.; He, R.; Han, X., “Deep Learning-Based Beam Management and Interference Coordination in Dense mmWave Networks.,” IEEE Transactions on Vehicular Technology 2019, vol. 68, no. 1, p. 592–603, January 2019. doi:10.1109/TVT.2018.2882635. Available in: <https://ieeexplore.ieee.org/document/8542687.
Li, X.; Ni, R.; Chen, J.; Lyu, Y.; Rong, Z.; Du, R., “End-to-End Network Slicing in Radio Access Network, Transport Network and Core Network Domains,” IEEE Access, vol. 8, p. 29525–29537, 06 February 2020. doi:10.1109/ACCESS.2020.29. Available in: https://ieeexplore.ieee.org/document/8985329.
Abbas, K.; Afaq, M.; Ahmed Khan, T.; Rafiq, A.; Song, W.C., “Slicing the Core Network and Radio Access Network Domains through Intent-Based Networking for 5G Networks,” Electronics 2020, vol. 9, no. 10, pp. 1-25, October 18, 2020. doi: 10.3390/electronics9101710. Available in: https://www.mdpi.com/2079-9292/9/10/1710.
Zappone, A.; Renzo, MD; Debbah, M., “Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?,” IEEE Transactions on Communications, vol. 67, no. 10, p. 7331–7376, October 2019. doi:10.1109/TCOMM.2019.2924010. Available in: https://ieeexplore.ieee.org/document/8742579.
Hammouti, HE; Ghogho, M.; Raza Zaidi, S.A., “A Machine Learning Approach to Predicting Coverage in Random Wireless Networks,” In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), p. 1–6, December 9-13, 2018. doi:10.1109/GLOCOMW.2018.8644199. Available in: https://ieeexplore.ieee.org/document/8644199.
Mulvey, D.; Foh, CH; Imran, M.A.; Tafazolli, R., “Cell Fault Management Using Machine Learning Techniques,” IEEE Access, vol. 7, p. 124514–124539, August 29, 2019. doi:10.1109/ACCESS.2019.2938410. Available in: https://ieeexplore.ieee.org/document/8819935.
Misbah Shafi, Rakesh Kumar Jha, Sanjeev Jain. "6G: Technology Evolution in Future Wireless Networks," IEEE Access, pp. 1-23, April 4, 2024. doi: 10.1109/access.2024.3385230. Available at: https://www.x-mol.net/paper/detail/1777754773570363392.
Mohamed H. Behiry and Mohammed Aly, "Cyberattack detection in wireless sensor networks using a hybrid feature reduction technique with AI and machine learning methods," Journal of Big Data, pp. 1-39, January 13, 2024. doi: 10.1186/s40537-023-00870-w. Available in: https://www.x-mol.net/paper/detail/1746617535566680064.
Bo Huang, Huidong Yao, Qing Bin Wu., "Prediction and evaluation of wireless network data transmission security risk based on machine learning," Wireless Networks, pp. 1-16, May 28, 2024. doi: 10.1007/s11276-024-03773-7. Available at: https://www.x-mol.net/paper/detail/1795916908216250368.
Sidra Abbas, Imen Bouazzi , Stephen Ojo , Abdullah Al Hejaili , Gabriel Avelino Sampedro , Ahmad Almadhor , Michal Gregus , “Evaluating deep learning variants for cyber-attacks detection and multi-class classification in IoT networks,” PeerJ Computer Science, vol. 10, pp. 1-23, January 16, 2024. doi: 10.7717/peerj-cs.1793. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803060/pdf/peerj-cs-10-1793.pdf.
Saida Hafsa Rafique , Amira Abdallah , Nura Shifa Musa, Thangavel Murugan , “Machine Learning and Deep Learning Techniques for Internet of Things Network Anomaly Detection-Current Research Trends,” Sensors (Basel), vol. 24, no. 6, pp. 1-32, March 20, 2024. doi: 10.3390/s24061968. Available at: https://pubmed.ncbi.nlm.nih.gov/38544231/.
Shaobo Han; Ming-Fang Huang; Tingfeng Li; Jian Fang; Zhuocheng Jiang; Ting Wang., “Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks,” Journal of Lightwave Technology, pp. 1-10, May 15, 2024. doi: 10.1109/JLT.2024.3401244. Available at: https://ieeexplore.ieee.org/document/10530902.
Ciric V., Marija Milosevic, Danijel Sokolovic , Ivan Milentijevic , “Modular deep learning-based network intrusion detection architecture for real-world cyber-attack simulation,” Simulation Modeling Practice and Theory, vol. 50, pp. 1-31, February 29, 2024. doi : 10.1016/j.simpat.2024.102916. Available at: https://www.x-mol.net/paper/detail/1763831311680376832.
Yesodha , M. Krishnamurthy, M. Selvi , A. Kannan , “Intrusion detection system extended CNN and artificial bee colony optimization in wireless sensor networks,” Peer-to-Peer Networking and Applications, vol. 17, p. 1237–1262, February 2, 2024. doi: 10.1007/s12083-024-01650-w. Available at: https://www.x-mol.net/paper/detail/1758918154138652672.
Yazeed Yasin Ghadi, Tehseen Mazhar, Tamara al Shloul, Tariq Shahzad, Umair Ahmad Salaria, Arfan Ahmed, Habib Hamam, “Machine Learning Solutions for the Security of Wireless Sensor Networks: A Review,” IEEE Access, vol. 12, pp. 1-21, January 17, 2024. doi:10.1109/access.2024.3355312. Available in: https://www.x-mol.net/paper/detail/1753674442961817600.
J. Amutha, S. Sharma and SK Sharma, “Strategies based on various aspects of clustering in wireless sensor networks using classical optimization and machine learning techniques: Review taxonomy research findings challenges and future directions,” Computer Science Review, vol. 40, pp. 1-18, May 2021. doi:https://doi.org/10.1016/j.cosrev.2021.100376. Available in: https://www.sciencedirect.com/science/article/abs/pii/S1574013721000162.
Y. Xue, Y. Tong and F. Neri, “An ensemble of differential evolution and Adam for training feed-forward neural networks,” Information Sciences, vol. 608, pp. 453-471, August 2022. doi:https://doi.org/10.1016/j.ins.2022.06.036. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0020025522006260.
G. Abbas, A. Mehmood, M. Carsten, G. Epiphaniou and J. Lloret, “Safety security and privacy in machine learning based Internet of Things,” J. Sensor Actuator Netw., vol. 11, no. 3, pp. 1-38, July 2022. doi:https://doi.org/10.3390/jsan11030038. Available in: https://www.mdpi.com/2224-2708/11/3/38.
M. Shafiq, Z. Gu, O. Cheikhrouhou, W. Alhakami and H. Hamam, «"The rise of 'Internet of Things': Review and open research issues related to detection and prevention of IoT-based security attacks",» Wireless Commun. Mobile Comput., vol. 12, pp. 1-12, August 2, 2022. doi:10.1155/2022/8669348. Available in: https://www.researchgate.net/publication/362469403_The_Rise_of_Internet_of_Things_Review_and_Open_Research_Issues_Related_to_Detection_and_Prevention_of_IoT-Based_Security_Attacks.
Kibria, M.G. Nguyen, K.; Villardi, GP; Zhao, O.; Ishizu, K.; Kojima, F., “Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks,” IEEE Access, vol. 6, p. 32328–32338, May 17, 2018. doi:10.1109/ACCESS.2018.2837692. Available in: https://ieeexplore.ieee.org/document/8360430.
ETSI TS 123 288, “Technical Specification Group Services and System Aspects; Architecture Enhancements for 5G System (5GS) to Support Network Data Analytics Services; 3GPP TS 123.288 Version 16.3.0 Release 16, » Technical Report; 3GPP Mobile Competence Centre, 2021. Available in: https://www.etsi.org/deliver/etsi_ts/123200_123299/123288/16.08.00_60/ts_123288v160800p.pdf.
ETSI TS 129 520, «5G System; 5G; Network Data Analytics Services; Stage 3 Network Data Analytics Services 3GPP TS 29.520 V15.3.0; Technical Report; 3GPP Mobile Competence Center: Sophia Antipolis,” 2021. Available in: https://www.etsi.org/deliver/etsi_ts/129500_129599/129520/16.07.00_60/ts_129520v160700p.pdf.
Schneider, J., Christian Meske & Pauline Kuss, “Foundation Models: A New Paradigm for Artificial Intelligence,” Business & Information Systems Engineering, vol. 66, p. 221–231, January 29, 2024. doi:https://doi.org/10.1007/s12599-024-00851-0. Available in: https://link.springer.com/article/10.1007/s12599-024-00851-0.
Konstantinos Koufos,Karim EI Haloui,Mehrdad Dianati,Matthew Higgins,Jaafar Elmirghani,Muhammad Ali Imran and Rahim Tafazolli, "Trends in Intelligent Communication Systems: Review of Standards, Major Research Projects, and Identification of Research Gaps.," J. Sens. Actuator Netw., vol. 10, no. 4, pp. 1-60, 2021. doi:https://doi.org/10.3390/jsan10040060. Available in: https://www.mdpi.com/2224-2708/10/4/60.
Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S., “A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, p. 269–283, January 2021. doi:10.1109/TWC.2020.3024629. Available in: https://ieeexplore.ieee.org/document/9210812.
Park, J.; Samarakoon, S.; Elgabli, A.; Kim, J.; Bennis, M.; Kim, SL; Debbah, M., “Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications,” Proceedings of the IEEE, vol. 109, no. 5, p. 796–819, May 2021. doi:10.1109/JPROC.2021.3055679. Available in: https://ieeexplore.ieee.org/document/9357490.
Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C., “Federated Learning in Mobile Edge Networks: A Comprehensive Survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, p. 2031–2063, 2020. doi:10.1109/COMST.2020.2986024. Available in: https://ieeexplore.ieee.org/document/9060868.
Liu, Y.; Yuan, X.; Xiong, Z.; Kang, J.; Wang, X.; Niyato, D., “Federated learning for 6G communications: Challenges, methods, and future directions,” China Communications, vol. 17, no. 9, p. 105–118, September 2020. doi:10.23919/JCC.2020.09.009. Available in: https://ieeexplore.ieee.org/document/9205981.
Bommasani R, Hudson DA, Adeli E et al., “On the opportunities and risks of foundation models,” Computer Science: Machine Learning, vol. v1, pp. 1-214, August 16, 2021. doi:https://doi.org/10.48550/arXiv.2108.07258. Available in: https://arxiv.org/pdf/2108.07258.
Teubner T, Flath CM, Weinhardt C, van der Aalst W, Hinz O, “Welcome to the era of ChatGPT et al. The prospects of large language models,” Business & Information Systems Engineering, vol. 65, no. 2, p. 95–101, March 2023. doi: 10.1007/s12599-023-00795-x. Available in: https://www.researchgate.net/publication/369549089_Welcome_to_the_Era_of_ChatGPT_et_al_The_Prospects_of_Large_Language_Models.
Sobania D, Briesch M, Hanna C, Petke J, "An analysis of the automatic bug fixing performance of ChatGPT," Computer Science: Software Engineering, pp. 1-8, January 20, 2023. doi:https://doi.org/10.48550/arXiv.2301.08653. Available in: https://arxiv.org/abs/2301.08653.
Chen L, Sun L, Han J, "A comparison study of human and machine generated creativity," J. Comput. Inf. Sci. Eng., vol. 2 3, no. 5, pp. 1-10, October 2023. doi:https://doi.org/10.1115/1.4062232. Available in: https://asmedigitalcollection.asme.org/computingengineering/article-abstract/23/5/051012/1160386/A-Comparison-Study-of-Human-and-Machine-Generated.
Ramesh A, Pavlov M, Goh G et al., “Zero-shot text-to-image generation,” In: International conference on machine learning, vol. 139, p. 8821–8831, 2021. Available at: https://proceedings.mlr.press/v139/ramesh21a.html.
Brown T, Mann B, Ryder N et al., “Language models are few-shot learners.,” Proc Adv Neural Inf Process Syst., vol. 33, p. 1877–1901, May 28, 2020. doi:https://doi.org/10.48550/arXiv.2005.14165. Available in: https://arxiv.org/abs/2005.14165.
Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G, "Pre-train, prompt, and prediction: a systematic survey of prompting methods in natural language processing," ACM Comput Surv., vol. 55, no. 9, p. 1–35, July 28, 2023. doi:https://doi.org/10.48550/arXiv.2107.13586.Available at: https://arxiv.org/abs/2107.13586.
Niu S, Liu Y, Wang J, Song H, “A decade survey of transfer learning (2010–2020),” IEEE Trans Artif Intell, vol. 1, no. 2, p. 151–166, October 2020. doi:10.1109/TAI.2021.3054609. Available in: https://ieeexplore.ieee.org/document/9336290.
Fishman N., Hancox-Li L., «Should attention be all we need? The epistemic and ethical implications of unification in machine learning. In: Proceedings of the ACM conference on fairness, accountability, and transparency,” Computer Science: Machine Learning, p. 1516–1527, May 9, 2022. doi:https://doi.org/10.1145/3531146.3533206. Available in: https://arxiv.org/abs/2205.08377.
Koniakou V., «From the “rush to ethics” to the “race for governance” in artificial intelligence.,” Inf Syst Front., vol. 25, no. 1, p. 71–102, 2023. doi: 10.1007/s10796-022-10300-6. Available in: https://www.mdpi.com/2224-2708/10/4/60.
Schneider J, Abraham R, Meske C, Vom Brocke J, “Artificial intelligence governance for businesses,” Inf Syst Manag., vol. 40, no. 3, p. 229–249, June 2023. doi:10.1080/10580530.2022.2085825. Available in: https://www.researchgate.net/publication/361442930_Artificial_Intelligence_Governance_For_Businesses.
Dwivedi YK, Kshetri N, Hughes L et al., «“So what if chatgpt wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy," International Journal of Information Management, vol. 71, no. 102642, pp. 1-63, 2023. doi:https://doi.org/10.1016/j.ijinfomgt.2023.102642. Available in: https://www.sciencedirect.com/science/article/pii/S0268401223000233
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.