Impact of Geometric, Electrical and Environmental Parameters on Particle Micromanipulation using Progressive Waves

Authors

  • Mimouni Chahinez, Benkrima Yamina

Keywords:

Waste electrical and electronic equipment, Environmental conditions, traveling waves, two-phase, three-phase voltage, humidity.

Abstract

Particle micromanipulation using traveling waves is an essential field based on the interaction of several factors. Among the main elements that influence this technique are the geometry of the traveling wave conveyor (two-phase or three-phase), the intensity of the electric field and the environmental conditions. The aim of this study is to analyze and optimize the geometric, electrical and environmental parameters that affect particle micromanipulation using traveling waves. By gaining a deeper understanding of these parameters and their interactions, the work aims to improve the efficiency and accuracy of this technique. This includes optimizing the geometry of the support, identifying the most effective electrode design to generate a dynamic electric field that allows the particles to be moved accurately. Controlling the electric field by adjusting the multiphase voltages applied to the electrodes to create an optimal electric field suitable for various micromanipulation applications. Stabilization of environmental conditions, assessing the impact of humidity on the micromanipulation process.

Downloads

Download data is not yet available.

References

Atten, P.; Pang, H.L.; Reboud, J.L.; Study of dust removal by stationary wave electric curtain for solar cell applications on Mars, IEEE Trans. Ind. Appl. 45 (2009); pp 75–86.

Available at doi:10.1109/IAS.2005.1518329.

Biris, A.; Sharma, A.R.; Characterization of electrodynamic screen performance for dust removal from solar panels and solar hydrogen generators, IEEE Trans. Ind. Appl. 49 (4) (2013); pp 1793-1800.

Available at doi:10.1109/TIA.2013.2258391.

Calle, C.I.; Buhler, C.R; Mantovani, J.G; Clements, S; Chen, A; Mazumder, M.K; Birisand, A. S; Nowicki, A.W. Electrodynamic shield to remove dust from solar panels on Mars, Spaceport Materials, Cape Canaveral, Florida, Session 2A, 2004, pp. 27-30. Available at https://core.ac.uk/reader/217150120.

Duff, J.D. ; Dielectrophoretic Precipitation of Airborne Particles, University of Louisville ProQuest Dissertations & Theses, 2013. 1524574. Available at :

https://www.proquest.com/openview/31bbff4288704c7c4530b66d083a927a/1?pq-origsite=gscholar&cbl=18750

García-Sanchez, P.; Ramos, A.; Green, N.G. ; Morgan, H. Experiments on AC electrokinetic pumping of liquids using microelectrode arrays, IEEE Trans. Dielectr. Electr. Insul. 13 (3) (2006) ; pp 670-677.

Available at :doi: 10.1109/TDEI.2006.1657983.

Kawamoto, H.; Hayashi, S. Fundamental investigation on electrostatic transport of traveling waves of liquid droplets, J. Phys 39 (2006) ; pp 418-423. Available at : doi : 10.1088/0022-3727/39/2/026.

Kawamoto, H.; Shibata, T. Electrostatic cleaning system for removing sand from solar panels, J. Electrost. 73 (2015), pp 65-70. Available at : doi: 10.1016/j.elstat.2014.10.011.

Kawamoto, H.; Uchiyama, M.; Cooper, B.L.; McKay, D.S. Mitigation of lunar dust on solar panels and optical elements using electrostatic traveling waves, J. Electrost. 69 (2011) 370-379. Available at: doi: 10.1016/j.elstat.2011.04.016.

Landis, G.A.; Jenkins P.P. Dust migration for solar panels on Mars (Conf), in: Rec, 29th Photovoltaic Spec, Conf, 2002, pp. 812-815. Available at: doi: 10.1109/PVSC.2002.1190698.

Lean, M.H.; Volkel, A.R.; Hsieh, H.B.; Lu, J.P.; Daniel, J.H.; Preas, B.T.; Limb, S.J. Traveling wave bioagent concentrator; IEEE. (2005); pp 80-83. Available at: doi: 10.1109/MMB.2005.1548389.

Lu, B.; Yang, J.; Ijomah, W.; Wu, W.; Zlamparet, G. Perspectives on WEEE reuse in China: lessons from the EU, Resour. Conserv. Recycling. 135 (2018) ; pp. 83-92. Available in: doi: 10.1016/j.resconrec.2017.07.012.

Masuda, S.; Washizu, M. ; Iwadare M. Separation of small particles suspended in a liquid by a nonuniform displacement field, IEEE Trans. Ind. Appl. 23 (1987) 474-480. Available at: doi:10.1109/TIA.1987.4504934

Mazumder, M.K.; Horenstein, M.; Stark, J.; Hudelson, J.N.; Sayyah, A.; Heiling, C.; Yellowhair, J. Electrodynamic dust removal from solar mirrors and its applications in concentrated solar power (CSP) plants, in: IEEE, 2014, pp. 1-7. Available at: doi: 10.1109/IAS.2014.6978347.

Mimouni, C. Recycling of crushed printed circuit boards (PCBs) by two-stage mobile wave conveyors, Military Technical Courier.2024, vol. 72-.2, pp 708-726. Available at: doi: 10.5937/vojtehg72-48409

Mimouni, C., Tilmatine, A., Rahou, F.Z.; Dascalescu, L. 2017. Numerical simulation of a ternary plastic granular mixture tribo-aeroelectrostatic separator. Journal of Electrostatics, 88, pp.2-9. Available at : doi:10.1016/j.elstat.2017.01.015.

Tilmatine, A. ; Alibida, A. ; Zelmat, S. ; Louati, H. ; Bellebna, Y. ; Miloua, F. On the force of attraction applied to metallic parts in a traveling wave conveyor, J. Electrost. 96 (2018) 64-68. Available at: doi: 10.1016/j.elstat.2018.10.001.

Yang, H.; Jiang, H.; Shang, D.; Ramos, A.; Garcia-Sanchez P. Experiments on traveling-wave electroosmosis: effect of electrolyte conductivity, IEEE Trans. Dielectr. Electr. Insul. 16 (2009), pp. 417-423.

Available at: doi: 10.1109/TDEI.2009.4815173.

Zouaghi, A.; Zouzou, N.; Dascalescu, L. Evaluation of the forces acting on fine particles in a traveling wave electric field conveyor: application to powder handling, Powder Technol. 343 (2019); pp. 375-382. Available at: doi: 10.1016/j.powtec.2018.11.065.

Downloads

Published

12.06.2024

How to Cite

Mimouni Chahinez. (2024). Impact of Geometric, Electrical and Environmental Parameters on Particle Micromanipulation using Progressive Waves. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 4086 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6982

Issue

Section

Research Article