Integrating Artificial Intelligence in Polymer Extrusion: Trends, Challenges, and Future Directions

Authors

  • Sri Charan Yarlagadda

Keywords:

revolutionize, AI, practices, requirement, encounters

Abstract

Polymer extrusion, a fundamental method in plastics production, is seeing great benefits from the adoption of AI technologies. This review looks at current trends and challenges, as well as where we might be headed in the future, with the use of AI to improve polymer extrusion processes. Techniques driven by AI such as machine learning, deep learning, and even reinforcement learning bring many clear advantages when it comes to dealing with complex process parameters. They offer a way to handle the nonlinearity and high dimensionality that are intrinsic to many aspects of extrusion. In addition, these same techniques allow for fault detection and process monitoring in "smart" extrusion systems. One significant advantage of using AI is its predictive capability. For example, neural networks can be trained to act as predictive models for how an extrusion process will behave given certain input conditions (e.g., material properties, temperatures, pressures). These models can replace or supplement the highly simplified mathematical models that have traditionally been used to describe extrusion processes. Nonetheless, the application of AI in polymer extrusion encounters hurdles like insufficient data, a lack of domain specific expertise, and the requirement for clear models. This review examines how these challenges can be overcome to use AI for advancing sustainable practices in polymer extrusion. Overall, this article fills a few gaps in the current research and provides a thorough understanding of how AI is beginning to "revolutionize" polymer extrusion.

Downloads

Download data is not yet available.

References

Tajeddin, B., & Arabkhedri, M. (2020). Polymers and food packaging. In M. A. AlMaadeed, D. Ponnamma, & M. A. Carignano (Eds.), Polymer Science and Innovative Applications (pp. 525-543). Elsevier. https://doi.org/10.1016/B978-0-12-816808-0.00016-0

Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002

Shen, J., Liang, J., Lin, X., Lin, H., Yu, J., & Yang, Z. (2020). Recent progress in polymer-based building materials. International Journal of Polymer Science, 2020, 1-15. https://doi.org/10.1155/2020/8838160

Zhang, W., & Xu, J. (2022). Advanced lightweight materials for automobiles: A review. Materials & Design, 221, 110994. https://doi.org/10.1016/j.matdes.2022.110994

Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific advancements in composite materials for aircraft applications: A review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007

Sikder, A., Pearce, A. K., Parkinson, S. J., Napier, R., & O’Reilly, R. K. (2021). Recent trends in advanced polymer materials in agriculture-related applications. ACS Applied Polymer Materials, 3(3), 1203-1217. https://doi.org/10.1021/acsapm.0c00982

Martin, T. B., & Audus, D. J. (2023). Emerging trends in machine learning: A polymer perspective. ACS Polymers Au, 3(3), 239-258. https://doi.org/10.1021/acspolymersau.2c00053

Namazi, H. (2017). Polymers in our daily life. Bioimpacts, 7(2), 73-74. https://doi.org/10.15171/bi.2017.09

Kassab, A., Al Nabhani, D., Mohanty, P., Pannier, C., & Ayoub, G. Y. (2023). Advancing plastic recycling: Challenges and opportunities in the integration of 3D printing and distributed recycling for a circular economy. Polymers, 15(19), 3881. https://doi.org/10.3390/polym15193881

Borrelle, S. B., et al. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6509), 1515-1518. https://doi.org/10.1126/science.aba3656

Sardon, H., & Dove, A. P. (2018). Plastics recycling with a difference. Science, 360(6387), 380-381. https://doi.org/10.1126/science.aat4997

Malik, H., Mohanty, A. K., & Misra, M. (2024). 3D printing in upcycling plastic and biomass waste to sustainable polymer blends and composites: A review. Materials & Design, 237, 112558. https://doi.org/10.1016/j.matdes.2023.112558

Park, J., Shim, Y., Lee, F., Rammohan, A., Goyal, S., Shim, M., Jeong, C., & Kim, D. S. (2022). Prediction and interpretation of polymer properties using the graph convolutional network. ACS Polymers Au, 2(4), 213-222. https://doi.org/10.1021/acspolymersau.1c00050

Munir, N., Nugent, M., Whitaker, D., & McAfee, M. (2021). Machine learning for process monitoring and control of hot-melt extrusion: Current state of the art and future directions. Pharmaceutics, 13(9), 1432. https://doi.org/10.3390/pharmaceutics13091432

Munir, N., McMorrow, R., Mulrennan, K., Whitaker, D., McLoone, S., Kellomäki, M., Talvitie, E., Lyyra, I., & McAfee, M. (2023). Interpretable machine learning methods for monitoring polymer degradation in extrusion of polylactic acid. Polymers (Basel), 15(17), 3566. https://doi.org/10.3390/polym15173566

Park, J., Shim, Y., Lee, F., Rammohan, A., Goyal, S., Shim, M., Jeong, C., & Kim, D. S. (2022). Prediction and interpretation of polymer properties using the graph convolutional network. ACS Polymers Au, 2(4), 213-222. https://doi.org/10.1021/acspolymersau.1c00050

Weichert, D., Link, P., & Stoll, A. (2019). A review of machine learning for the optimization of production processes. International Journal of Advanced Manufacturing Technology, 104(5), 1889-1902. https://doi.org/10.1007/s00170-019-03988-5

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0. Sustainability, 12(19), 8211. https://doi.org/10.3390/su12198211

Abeykoon, C., McMillan, A., & Nguyen, B. K. (2021). Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renewable and Sustainable Energy Reviews, 147, 111219. https://doi.org/10.1016/j.rser.2021.111219

Guetterman, T. C., Fetters, M. D., & Creswell, J. W. (2015). Integrating quantitative and qualitative results in health science mixed methods research through joint displays. Annals of Family Medicine, 13(6), 554-561. https://doi.org/10.1370/afm.1865

Al-Kharusi, G., Dunne, N. J., Little, S., & Levingstone, T. J. (2022). The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research. Bioengineering (Basel), 9(10), 561. https://doi.org/10.3390/bioengineering9100561

Colosimo, B., Pagani, L., & Strano, M. (2014). Reduction of calibration effort in FEM-based optimization via numerical and experimental data fusion. Structural and Multidisciplinary Optimization, 51, 1193-1205. https://doi.org/10.1007/s00158-014-1149-0

Gupta, A., Guntuku, S. C., Desu, R., & Balu, A. (2014). Optimisation of turning parameters by integrating genetic algorithm with support vector regression and artificial neural networks. The International Journal of Advanced Manufacturing Technology, 77, 1-9. https://doi.org/10.1007/s00170-014-6282-9

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, 13, 281-305.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). https://doi.org/10.1145/2939672.2939785

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539

Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, 2, 37-63.

Charalampous, P., Kostavelis, I., Kopsacheilis, C., et al. (2021). Vision-based real-time monitoring of extrusion additive manufacturing processes for automatic manufacturing error detection. International Journal of Advanced Manufacturing Technology, 115, 3859-3872. https://doi.org/10.1007/s00170-021-07419-2

Babu, S. S., Mourad, A. H. I., Harib, K. H., & Vijayavenkataraman, S. (2022). Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual and Physical Prototyping, 18(1). https://doi.org/10.1080/17452759.2022.2141653

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). The MIT Press.

Zope, K., Singh, K., Nistala, S. H., Basak, A., Rathore, P., & Runkana, V. (2019). Anomaly Detection and Diagnosis In Manufacturing Systems: A Comparative Study Of Statistical, Machine Learning And Deep Learning Techniques. Annual Conference of the PHM Society, 11(1). https://doi.org/10.36001/phmconf.2019.v11i1.815

Rawat, S., Rawat, A., Kumar, D., & Sai Sabitha, A. (2021). Application of machine learning and data visualization techniques for decision support in the insurance sector. International Journal of Information Management Data Insights, 1(2), 100012. https://doi.org/10.1016/j.jjimei.2021.100012

González Rodríguez, G., Gonzalez-Cava, J. M., & Méndez Pérez, J. A. (2019). An intelligent decision support system for production planning based on machine learning. Journal of Intelligent Manufacturing, 30, 2381-2394. https://doi.org/10.1007/s10845-019-01420-6

Surucu, O., Gadsden, S. A., & Yawney, J. (2023). Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances. Expert Systems with Applications, 221, 119738. https://doi.org/10.1016/j.eswa.2023.119738

Downloads

Published

06.08.2024

How to Cite

Sri Charan Yarlagadda. (2024). Integrating Artificial Intelligence in Polymer Extrusion: Trends, Challenges, and Future Directions. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 772 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6998

Issue

Section

Research Article