Deep Neural Networks for Air Pollution Forecasting

Authors

  • Vidyut Singhai, Nidhi Sethi

Keywords:

Air Pollution, Forecasting, Deep Learning, Prediction, Hybrid Models

Abstract

This study explores the use of deep learning models for forecasting air pollution, specifically PM2.5 levels, using data from the Central Pollution Control Board (CPCB). The methodology involves extensive data preprocessing, including trend identification, missing value handling, and the extraction of temporal features to capture seasonal variations. The models evaluated include standalone LSTM, Hybrid LSTM-1D CNN, Hybrid LSTM-GRU, and Hybrid GRU-1D CNN. An 80:20 training-testing split was used, with feature extraction methods applied to enhance predictive accuracy. The performance of the models was assessed using common metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2). The Hybrid GRU-1D CNN model demonstrated the best performance, achieving the lowest MSE (201.2), RMSE (14.1), and MAE (6.7), with a high R2 value of 0.99. These results highlight the potential of hybrid deep learning models for accurate air pollution prediction, offering valuable insights for environmental monitoring and policymaking.

Downloads

Download data is not yet available.

References

Z. Wu, N. Liu, G. Li, X. Liu, Y. Wang, and L. Zhang, “Meta-Learning-Based Spatial-Temporal Adaption for Coldstart Air Pollution Prediction,” Int. J. Intell. Syst., vol. 2023, 2023, doi: 10.1155/2023/3734557.

N. S. Gupta, Y. Mohta, K. Heda, R. Armaan, B. Valarmathi, and G. Arulkumaran, “Prediction of Air Quality Index Using Machine Learning Techniques: A Comparative Analysis,” J. Environ. Public Health, vol. 2023, pp. 1–26, 2023, doi: 10.1155/2023/4916267.

T. Melese, T. Berhane, A. Mohammed, and A. Walelgn, “Credit-Risk Prediction Model Using Hybrid Deep—Machine-Learning Based Algorithms,” Sci. Program., vol. 2023, pp. 1–13, 2023, doi: 10.1155/2023/6675425.

A. Bikis, “Urban Air Pollution and Greenness in Relation to Public Health,” J. Environ. Public Health, vol. 2023, no. X, p. 8516622, 2023, doi: 10.1155/2023/8516622.

Z. Guo, H. Lin, and Z. Qiao, “Air Pollution Detection and Sports Club Environmental Responsibility Based on the RBF Neural Network,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/3693310.

L. Zhang and G. Huang, “A Hybrid Approach for Network Rumor Detection Based on Attention Mechanism and Bidirectional GRU Model in Big Data Environment,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/4185208.

E. S. Lee et al., “A Machine Learning-Based Study of the Effects of Air Pollution and Weather in Respiratory Disease Patients Visiting Emergency Departments,” Emerg. Med. Int., vol. 2022, pp. 1–20, 2022, doi: 10.1155/2022/4462018.

H. Zheng, M. Duan, X. Sun, G. Han, and Q. Jin, “Landslide Displacement Prediction Based on Transfer Learning and Bi-GRU,” J. Sensors, vol. 2022, 2022, doi: 10.1155/2022/4659853.

D. Kothandaraman et al., “Intelligent Forecasting of Air Quality and Pollution Prediction Using Machine Learning,” Adsorpt. Sci. Technol., vol. 2022, 2022, doi: 10.1155/2022/5086622.

S. Chen, M. Hu, Y. Jiang, and Y. Xiong, “Spatial-Temporal Characteristics Analysis of Air Pollution in Hubei Province Based on Functional Data Clustering,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/7023071.

L. Zhiwei, “Bearing Fault Diagnosis of End-to-End Model Design Based on 1DCNN-GRU Network,” Discret. Dyn. Nat. Soc., vol. 2022, 2022, doi: 10.1155/2022/7167821.

Z. Li, X. Bian, J. Yin, X. Zhang, and G. Mu, “The Effect of Air Pollution on the Occurrence of Nonspecific Conjunctivitis,” J. Ophthalmol., vol. 2016, pp. 10–13, 2016, doi: 10.1155/2016/3628762.

C. M. Vong, W. F. Ip, P. K. Wong, and J. Y. Yang, “Short-term prediction of air pollution in macau using support vector machines,” J. Control Sci. Eng., vol. 2012, 2012, doi: 10.1155/2012/518032.

P. V. Moulton and W. Yang, “Air pollution, oxidative stress, and alzheimer’s disease,” J. Environ. Public Health, vol. 2012, no. x, 2012, doi: 10.1155/2012/472751.

J. Nikiema, E. M. Nkhalambayausi-Chirwa, and Y. Andrs, “Quality and pollution control technologies for water, air, and soil,” Int. J. Chem. Eng., vol. 2010, 2010, doi: 10.1155/2010/252131.

M. J. Jiménez-Navarro, M. Lovrić, S. Kecorius, E. K. Nyarko, and M. Martínez-Ballesteros, “Explainable deep learning on multi-target time series forecasting: An air pollution use case,” Results Eng., vol. 24, no. October, p. 103290, 2024, doi: 10.1016/j.rineng.2024.103290.

K. S. Rautela and M. K. Goyal, “Transforming air pollution management in India with AI and machine learning technologies,” Sci. Rep., vol. 14, no. 1, pp. 1–19, 2024, doi: 10.1038/s41598-024-71269-7.

F. Naz et al., “Comparative Analysis of Deep Learning and Statistical Models for Air Pollutants Prediction in Urban Areas,” IEEE Access, vol. 11, no. June, pp. 64016–64025, 2023, doi: 10.1109/ACCESS.2023.3289153.

L. Zhu, Z. J. B. M. Husny, N. A. Samsudin, H. P. Xu, and C. Han, “Deep learning method for minimizing water pollution and air pollution in urban environment,” Urban Clim., vol. 49, no. February, 2023, doi: 10.1016/j.uclim.2023.101486.

Y. Gu, B. Li, and Q. Meng, “Hybrid interpretable predictive machine learning model for air pollution prediction,” Neurocomputing, vol. 468, pp. 123–136, 2022, doi: 10.1016/j.neucom.2021.09.051.

A. Dairi, F. Harrou, S. Khadraoui, and Y. Sun, “Integrated Multiple Directed Attention-Based Deep Learning for Improved Air Pollution Forecasting,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2021.3091511.

P. Hähnel, J. Mareček, J. Monteil, and F. O’Donncha, “Using deep learning to extend the range of air pollution monitoring and forecasting,” J. Comput. Phys., vol. 408, 2020, doi: 10.1016/j.jcp.2020.109278.

S. Al-Janabi, M. Mohammad, and A. Al-Sultan, “A new method for prediction of air pollution based on intelligent computation,” Soft Comput., vol. 24, no. 1, pp. 661–680, 2020, doi: 10.1007/s00500-019-04495-1.

S. Ameer et al., “Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities,” IEEE Access, vol. 7, pp. 128325–128338, 2019, doi: 10.1109/ACCESS.2019.2925082.

I. I. Prado-Rujas, A. García-Dopico, E. Serrano, M. L. Córdoba, and M. S. Pérez, “A multivariable sensor-agnostic framework for spatio-temporal air quality forecasting based on Deep Learning,” Eng. Appl. Artif. Intell., vol. 127, no. May 2023, 2024, doi: 10.1016/j.engappai.2023.107271.

H. Tao et al., “Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters,” Environ. Int., vol. 175, no. December 2022, p. 107931, 2023, doi: 10.1016/j.envint.2023.107931.

Downloads

Published

25.08.2024

How to Cite

Vidyut Singhai. (2024). Deep Neural Networks for Air Pollution Forecasting. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 2073 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7255

Issue

Section

Research Article