An Image Processing-Driven CNN Model for Precise Detection of Brain Tumors in MRI Data
Keywords:
Brain tumor, MRI, CNN, deep learning, image classification, clinical diagnosisAbstract
Brain tumors, characterized by the uncontrolled proliferation of abnormal cells within brain tissue, represent a significant clinical challenge affecting individuals across all age groups. The rapid progression and sensitive anatomical location of such tumors underscore the necessity for prompt and precise diagnostic methodologies. Magnetic Resonance Imaging (MRI) remains the gold standard for non-invasive visualization of intracranial abnormalities, offering high-resolution structural information critical for early tumor detection. This study introduces a customized Convolutional Neural Network (CNN) framework specifically designed for the automated analysis of brain MRI scans to facilitate accurate tumor identification. The proposed model comprises five convolutional layers for deep hierarchical feature extraction, each followed by a max-pooling layer to systematically reduce spatial complexity while retaining essential information. A subsequent Flatten layer and two densely connected layers support robust classification, enhanced through the integration of optimized activation functions and an improved hidden layer topology to accelerate convergence and learning stability. Empirical validation reveals an impressive classification accuracy of 98.6% and a precision rate of 97.8%, with minimal cross-entropy loss. Comparative benchmarking against leading architectures—including Mask R-CNN, AFPNet, Fourier CNN, and YOLOv5—demonstrates the superior performance of the proposed approach, affirming its efficacy for advanced clinical decision support in brain tumor diagnostics.
Downloads
References
A.HussainandA.Hussain,“Aninsilicoapproachforbraintumor detectionandclassificationfrommagneticresonance images,”CurrentCancerTherapyReviews,vol.18,Mar.2022,doi:10.2174/1573394718666220329184137.
A.Işın,C.Direkoğlu,andM.Şah,“ReviewofMRI-basedbraintumorimagesegmentationusingdeeplearningmethods,”
A. M. Sarhan, “Brain tumor classification in magnetic resonance images using deep learning and wavelet transform,” Journal ofBiomedicalScienceandEngineering,vol.13,no.06,pp.102–112,2020,doi:10.4236/jbise.2020.136010.
A. Minz and C. Mahobiya, “MR Image classification using AdaBoost for brain tumor type,” in 2017 IEEE 7th InternationalAdvanceComputingConference(IACC), Jan.2017,pp.701–705,doi:10.1109/IACC.2017.0146.
A.R.DeepaandW.R.S.Emmanuel,“AcomprehensivereviewandanalysisonMRIbasedbraintumorsegmentation,”
B.PandaandC.S.Panda,“Areviewonbraintumorclassificationmethodologies,”InternationalJournalofScientificResearchinScienceandTechnology,pp.346–359, Dec.2019,doi:10.32628/IJSRST20717.
F. Derikvand and H. Khotanlou, “Brain tumor segmentation in MRI images using a hybrid deep network based on patch andpixel,”in2020InternationalConferenceonMachineVisionandImageProcessing(MVIP),Feb.2020,pp.1–5,doi:10.1109/MVIP49855.2020.9116880.
G. Hemanth, M. Janardhan, and L. Sujihelen, “Design and implementing brain tumor detection using machine learning approach,”in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019, pp. 1289–1294, doi:10.1109/ICOEI.2019.8862553.
G.S.Tandeletal.,“Areviewonadeeplearningperspectiveinbraincancerclassification,”Cancers,vol.11,no.1,Jan.2019,doi:10.3390/cancers11010111.
InternationalJournalofScientific&TechnologyResearch,vol.8,no.10,pp.2140–2154,2019.
K. R. Bhatele and S. S. Bhadauria, “Brain structural disorders detection and classification approaches: a review,” ArtificialIntelligenceReview,vol.53,no.5,pp. 3349–3401, Jun.2020,doi:10.1007/s10462-019-09766-9.
L. Kapoor and S. Thakur, “A survey on brain tumor detection using image processing techniques,” in 2017 7th InternationalConferenceonCloudComputing,DataScience&Engineering-Confluence,Jan.2017,pp.582–585,doi:10.1109/CONFLUENCE.2017.7943218.
M. I. Sharif, “Recent advancements in brain tumor segmentation and classification using deep learning: a review,” InternationalJournalofEngineeringResearchand,vol.V8,no.12,Dec.2019,doi:10.17577/IJERTV8IS120190.
M. I. Sharif, J. P. Li, J. Naz, and I. Rashid,“A comprehensive review on multi-organs tumor detection based on machinelearning,”Pattern Recognition Letters, vol.131,pp.30–37,Mar.2020,doi:10.1016/j.patrec.2019.12.006.
M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed, “A review on brain tumor diagnosis from MRI images:Practical implications, key achievements, and lessons learned,” Magnetic Resonance Imaging, vol. 61, pp. 300–318, Sep. 2019,doi:10.1016/j.mri.2019.05.028.
M. Mudda, R. Manjunath, and N. Krishnamurthy, “Brain tumor classification using enhanced statistical texture features,” IETEJournalofResearch,pp.1–12, Jun.2020,doi:10.1080/03772063.2020.1775501.
M. Sharif, J. Amin, M. Raza, M. Yasmin, and S. C. Satapathy, “An integrated design of particle swarm optimization (PSO) withfusionoffeaturesfordetectionofbraintumor,”PatternRecognitionLetters,vol.129,pp.150–157,Jan.2020,doi:10.1016/j.patrec.2019.11.017.
P. Saha, R. Das, and S. K. Das, “BCM-VEMT: Classification of brain cancer from MRI images using deep learning and ensembleofmachinelearningtechniques,” ResearchSquare,pp.1–19,2021,doi:10.21203/rs.3.rs-1100868/v1.
ProcediaComputerScience,vol.102,pp.317–324,2016,doi:10.1016/j.procs.2016.09.407.
R. Kaur and A. Doegar, “Localization and classification of brain tumor using machine learning & deep learning techniques,”InternationalJournalofInnovativeTechnologyandExploringEngineering,vol.8,no.9S,pp.59–66,Aug.2019,doi:10.35940/ijitee.I1010.0789S19.
R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2020,” CA: A Cancer Journal for Clinicians, vol. 70, no. 1, pp. 7–30,Jan.2020,doi:10.3322/caac.21590.
R. Ranjbarzadeh, A. B. Kasgari, S. J. Ghoushchi, S. Anari, M. Naseri, and M. Bendechache, “Brain tumor segmentation based ondeeplearningandanattentionmechanismusingMRImulti-modalitiesbrainimages,”ScientificReports,vol.11,no.1,Art. no.10930,Dec.2021,doi:10.1038/s41598-021-90428-8.
S.A.SwapnilandV.S.Girish,“Imageminingmethodologyfordetectionofbraintumor:Areview,”in2020FourthInternationalConferenceonComputingMethodologiesandCommunication(ICCMC),Mar.2020,pp.232–237,doi:10.1109/ICCMC48092.2020.ICCMC-00044.
S. Kumar, A. Negi, J. N. Singh, and H. Verma, “A deep learning for brain tumor MRI images semantic segmentation using FCN,”in20184thInternationalConferenceonComputingCommunicationandAutomation(ICCCA),Dec.2018,pp.1–4,doi:10.1109/CCAA.2018.8777675.
T. Hossain, F. S. Shishir, M. Ashraf, M. D. A. Al Nasim, and F. M. Shah, “Brain tumor detection using convolutional neuralnetwork,” in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), May2019,pp.1–
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.