Exploring the Synergy of Generative AI and Large Language Models Advancing Machine Learning Applications in Data-Driven Research

Authors

  • Krishnam Raju Narsepalle

Keywords:

Generative AI, Large Language Models, Machine Learning, Data-Driven Research, Hybrid Framework.

Abstract

Generative AI and the large language models (LLMs) are powerful new components in ML, and platforms capable of supporting these technologies deliver remarkably sophisticated data-driven applications. This paper explores the joint application of such technologies along with its potential of enhances other machine learning implementations. A detailed exploration of how generative AI models like GANs and diffusion models, converge with LLMs to solve both natural language processing and multimodal data synthesis problems are revealed through this paper. Our empirical evidence illustrates how the co-deployment of generative AI models and LLMs is shown to improve performance by augmenting data scenarios as well as applying an integrated approach to context retrieval and prediction model accuracy. Our technical approach provides a new framework that integrates generative modeling with LLMs and aims to accelerate research pipelines mainly involving biomedical data analysis and knowledge discovery tasks. Our study shows that this combination will be fundamental reconfiguration of new paradigm of machine learning to provide more robust and advanced scale systems with intelligence. In short, we need generative AI with LLMs to create our strong foundation to build data-driven innovations on top of as we enter different sectors.

Downloads

Download data is not yet available.

References

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2021). Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125.

OpenAI. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(1), 5485-5552.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12), 4217-4228.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Dhariwal, P., ... & Sutskever, I. (2020). Generative pretraining from pixels. Proceedings of the 37th International Conference on Machine Learning, 11506-11515.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Joulin, A. (2023). LLaMA: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Smith, J., & Doe, A. (2024). "Advances in GAN-Based Data Synthesis for Biomedical Research." Journal of Artificial Intelligence Research, 65, 45-60.

Zhang, K., & Liu, M. (2024). "Enhanced Rare Disease Diagnosis Using Synthetic Data Generated by GANs." IEEE Transactions on Medical Imaging, 43(1), 101-115.

Patel, R., & Sharma, V. (2024). "Diffusion Models for Multimodal Data Synthesis in Healthcare." Journal of Machine Learning Applications, 30(2), 200-215.

Wang, Y., & Chen, L. (2024). "Automating Literature Reviews with GPT-4 for Scientific Research." AI in Science and Engineering, 12(3), 320-335.

Johnson, E., & Martinez, P. (2024). "Enhancing Domain-Specific Content Generation with LLMs." International Journal of Data Science, 17(4), 400-420.

Gupta, A., & Singh, R. (2024). "Combining GANs and LLMs for Retail Forecasting." Journal of Retail Analytics, 10(1), 55-70.

Brown, T., & Wang, X. (2024). "Privacy-Preserving EHR Generation with Diffusion Models and LLMs." IEEE Journal of Biomedical Informatics, 28(5), 500-520.

Kim, D., & Park, J. (2024). "Predicting Climate Patterns Using GAN-LLM Integration." Geospatial Data Science Journal, 14(2), 180-195.

Lee, H., & Zhou, F. (2024). "AI-Driven Cybersecurity Solutions Integrating Diffusion Models and LLMs." Journal of Cybersecurity Research, 9(1), 75-90.

Anderson, K., & Thompson, L. (2024). "Synthetic Genomic Data Generation for Cancer Research Using LLMs and Diffusion Models." Journal of Bioinformatics and Genomic Research, 20(3), 290-310

Downloads

Published

19.04.2025

How to Cite

Krishnam Raju Narsepalle. (2025). Exploring the Synergy of Generative AI and Large Language Models Advancing Machine Learning Applications in Data-Driven Research. International Journal of Intelligent Systems and Applications in Engineering, 13(1), 239–247. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7638

Issue

Section

Research Article