Integrating Traditional ML Models: A Hybrid Ensemble Churn Prediction Framework

Authors

  • Mohd Shadab, Mohammad Faisal

Keywords:

Customer churn prediction, Hybrid ensemble model, Traditional machine learning, Gradient Boosting Machine (GBM), Random Forest (RF), XGBoost, Stacking ensemble, Customer retention, Predictive analytics.

Abstract

Customer Churn Prediction is useful to identify and retain important customers to avoid any business losses. The traditional Machine Learning algorithm provides outstanding results to evaluate the customer information, but these algorithms are unable to detect complex patterns about customers’ behavior. This paper designates a Hybrid Ensemble Churn Prediction Model, which uses multiple prevalent Machine Learning algorithms such as GBM and RF along with a higher level of meta-learning that uses XGBoost. The purpose is to make use of stacking to improve model robustness to predictions and avoid misclassifications to boost customers’ recall. Theoretical validation shows that this hybrid ensemble can outperform GBM and RF on Accuracy, F1-score, and AUC values to make this algorithm a best choice to formulate customers’ retention strategy.

Downloads

Download data is not yet available.

References

X. Xiahou and Y. Harada, “B2C e-commerce customer churn prediction based on K-Means and SVM,” J. Theor. Appl. Electron. Commer. Res., vol. 17, no. 2, pp. 458–475, 2022.DOI: 10.3390/jtaer17020024

M. I. et al., “Customer Churn Prediction: A Systematic Review of Recent Advances, Trends, and Challenges in Machine Learning and Deep Learning,” Mach. Learn. Knowl. Extr., vol. 7, no. 3, 2025.

DOI: 10.3390/make7030105

A. Bhatnagar and S. Srivastava, “Customer Churn Prediction: A Machine Learning Approach with Data Balancing for Telecom Industry,” Int. J. Computing, vol. 24, no. 1, 2024.DOI: 10.47839/ijc.24.1.3873

Md A. Al Rahib, N. Saha, R. Mia, and A. Sattar, “Customer data prediction and analysis in e-commerce using machine learning,” Bull. Electr. Eng. Inform., vol. 13, no. 4, 2024.DOI: 10.11591/eei.v13i4.6420

J. Friedman, “Greedy function approximation: A gradient boosting machine,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001.DOI: 10.1214/aos/1013203451

L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.

DOI: 10.1023/A:1010933404324

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.

DOI: 10.1038/nature14539

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” KDD, pp. 785–794, 2016.

DOI: 10.1145/2939672.2939785

W. Verbeke et al., “A comprehensive study on churn prediction in the telecommunications industry,” Expert Syst. Appl., 2011.DOI: 10.1016/j.eswa.2011.01.027

M. Gupta and S. Tripathy, “Customer churn prediction in e-commerce: A machine learning approach,” Int. J. Data Sci. Anal., 2020.DOI: 10.1007/s41060-018-0158-0

A. Amin et al., “Churn analysis using behavioral logs and usage patterns,” J. Ambient Intell. Humanized Comput., 2021.DOI: 10.1007/s12652-020-01855-4

Z. Huang, H. Chen, and C. Zeng, “Applying data mining to telecom churn prediction,” IEEE ICDM, 2018.

DOI: 10.1109/ICDM.2018.00015

S. Zhang, A. Chen, and P. Zhou, “A hybrid ensemble model for customer churn prediction using stacking,” Procedia Comput. Sci., vol. 199, pp. 450–457, 2022.DOI: 10.1016/j.procs.2022.01.057

A. Khattak et al., “A hybrid BiLSTM–CNN model for churn prediction,” Telecommun. Syst., 2023.

DOI: 10.1007/s11235-023-01060-w

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. Kegelmeyer, “SMOTE: Synthetic Minority Oversampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.DOI: 10.1613/jair.953

T. Verbeke, D. Martens, C. Mues, and B. Baesens, “Building comprehensible churn prediction models using rule induction,” Expert Syst. Appl., 2012.DOI: 10.1016/j.eswa.2011.10.027

A. Idris, M. Rizwan, and A. Khan, “Churn prediction using boosting and bagging,” Eng. Appl. Artif. Intell., vol. 36, pp. 249–257, 2014.DOI: 10.1016/j.engappai.2014.07.001

W. Wang et al., “Customer behavior prediction using deep learning,” IEEE Access, 2018.

DOI: 10.1109/ACCESS.2018.2832981

T. Fader and B. Hardie, “Customer-base analysis using Pareto/NBD models,” Marketing Science, 2010.

DOI: 10.1287/mksc.1090.0505

A. Graves, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

DOI: 10.1162/neco.1997.9.8.1735

V. Kumar and S. Gupta, “Customer churn prediction using recurrent networks,” Information Systems Frontiers, 2019.DOI: 10.1007/s10796-018-9865-3

H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., 2009.

DOI: 10.1109/TKDE.2008.239

Downloads

Published

11.11.2024

How to Cite

Mohd Shadab. (2024). Integrating Traditional ML Models: A Hybrid Ensemble Churn Prediction Framework. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 2286–2300. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7930

Issue

Section

Research Article