“Sentiment Analysis of Code-Mixed Social Media Text in Indian-Languages”
Keywords:
Natural Language Processing, Machine Learning, Sentiment Analysis, Code-mixed, Datasets, Language Identification, Named Entity RecognitionAbstract
The arrival of web 2.0 platforms and increasing usage of social networking sites have proliferated social media content on the web. These platforms also provides multilingual interface to allow people to write freely in their native language.Over the past few decades, a new phenomenon called “code-mixing” has been observed in social media data which has attracted attention of researchers in sociolinguists and Natural Language Processing domains. However, due to informal nature of the text present in code-mixing phenomenon, there are a number of challenges ranging from data extraction to summarization. Sentiment Analysis of code-mixed data is one of the key research field which has emerged in recent past. Sentiment Analysis is the combination of application areas such as Natural Language Processing, Statistical methods and linguistics that classify a document or a sentence into positive, negative and neutral categories. These classes represent opinions/views of a person about a product, service, an event, a social movement, a political issue or a government policy. Extracting such useful information from unstructured data has applications in business, marketing, commerce, travel, finance, healthcare, politics etc. The goal is to provide natural language processing (NLP) tools that can collect, analyzed, evaluate, and summarize CM (“code-mixed”) data. The researchers had to deal with dataset construction, preprocessing, annotation, language identification, feature extraction and feature selection, and sentiment classification when it came to sentiment analysis of CMSMT (“Code-mixed Social Media Text”). This paper provides a detailed overview of work carried out in these challenges which will help researchers of this field in their future directions.
Downloads
References
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of computer‐mediated Communication, 13(1), 210-230.
Kumar, V., &Dhar, M. (2018). Looking Beyond the Obvious: Code-Mixed Sentiment Analysis (CMSA).
Singhal, S., &Garg, N. (2018). Web Page Representation Using Backtracking with Multidimensional Database for Small Screen Terminals. In Innovations in Computational Intelligence (pp. 299-307). Springer, Singapore.
Farzindar, A. A., &Inkpen, D. (2020). Natural language processing for social media. Synthesis Lectures on Human Language Technologies, 13(2), 1-219.
Chowdhury, G. G. (2003). Natural language processing. Annual review of information science and technology, 37(1), 51-89.
Barkur, G., &Vibha, G. B. K. (2020). Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: Evidence from India. Asian journal of psychiatry, 51, 102089.
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. doi:10.1561/1500000011.
Hong, L., Convertino, G., & Chi, E. (2011, July). Language matters in twitter: A large scale study. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 5, No. 1).
Chakma, K., & Das, A. (2016). Cmir: A corpus for evaluation of code mixed information retrieval of hindi-english tweets. Computación y Sistemas, 20(3), 425-434.
Barnali, C. (2017). Code-Switching and Mixing in Communication− A Study on Language Contact in Indian Media. In The Future of Ethics, Education and Research (pp. 110-123). ScientiaMoralitas Research Institute.
Muysken, P., &Muysken, P. C. (2000). Bilingual speech: A typology of code-mixing. Cambridge University Press.
Wei, L. (2005). “How can you tell?” Towards a common sense explanation of conversational code-switching. Journal of Pragmatics, 37(3), 375-389.
Ritchie, W. C., & BHATIA, T. (2004). 13 Social and Psychological Factors in Language Mixing. The handbook of bilingualism, 46, 336
Kim, E. (2006). Reasons and motivations for code-mixing and code-switching. Issues in EFL, 4(1), 43-61
Sotillo, S. (2012). Ehhhhutedehacen plane sin mi???:@ im feeling left out:(form, function and type of code switching in SMS texting. In ICAME (Vol. 33, pp. 309-310).][ Bock, Z. (2013). Cyber socialising: Emerging genres and registers of intimacy among young South African students. Language Matters, 44(2), 68-91.
Zarate, A. L. X. (2010). Code-mixing in Text Messages: Communication Among University Students. Memorias del XI EncuentroNacional de Estudios en Lenguas. Retrieved on, 26.
Shafie, L. A., &Nayan, S. (2013). Languages, code-switching practice and primary functions of Facebook among university students. Study in English Language Teaching, 1(1), 187-199.
NegrónGoldbarg, R. (2009). Spanish-English codeswitching in email communication. Language@ internet, 6(3)
Li, D. C. (2000). Cantonese‐English code‐switching research in Hong Kong: A Y2K review. World Englishes, 19(3), 305-322.
San, H. K. (2009). Chinese-English code-switching in blogs by Macao young people]
Hidayat, T. (2012). An analysis of code switching used by facebookers (a case study in a social network site). Unpublished BA thesis. SekolahTinggiKeguruandanIlmuPendidikanSiliwangi, Bandung
Das, A., &Gambäck, B. (2015). Code-mixing in social media text: the last language identification frontier?
Medhat, W., Hassan, A., &Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093-1113
Rani, S., & Kumar, P. (2019). A journey of Indian languages over sentiment analysis: a systematic review. Artificial Intelligence Review, 52(2), 1415-1462
Tho, C., Warnars, H. L. H. S., Soewito, B., &Gaol, F. L. (2020, November). Code-Mixed Sentiment Analysis Using Machine Learning Approach–A Systematic Literature Review. In 2020 4th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 1-6). IEEE
Al-Moslmi, T., Omar, N., Abdullah, S., &Albared, M. (2017). Approaches to cross-domain sentiment analysis: A systematic literature review. Ieee access, 5, 16173-16192
Kumar, A., &Jaiswal, A. (2020). Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience, 32(1), e5107
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89
Vijayarani, S., Ilamathi, M. J., &Nithya, M. (2015). Preprocessing techniques for text mining-an overview. International Journal of Computer Science & Communication Networks, 5(1), 7-16
Gurusamy, V., &Kannan, S. (2014). Preprocessing techniques for text mining. International Journal of Computer Science & Communication Networks, 5(1), 7-16
Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: A comparison of retrieval performance
Jivani, A. G. (2011). A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl, 2(6), 1930-1938
Jauhiainen, T., Lui, M., Zampieri, M., Baldwin, T., &Lindén, K. (2019). Automatic language identification in texts: A survey. Journal of Artificial Intelligence Research, 65, 675-782
Kaity, M., &Balakrishnan, V. (2020). Sentiment lexicons and non-English languages: a survey. Knowledge and Information Systems, 1-36
S Thavareesan (2018). Review on Sentiment Lexicons of Indian Languages. Progress in Nonlinear Dynamics and Chaos 6(2), 65-69 http://www.researchmathsci.org/PINDACArt/PINDAC-v6n2-1.pdf
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260
Hasan, A., Moin, S., Karim, A., &Shamshirband, S. (2018). Machine learning-based sentiment analysis for twitter accounts. Mathematical and Computational Applications, 23(1), 11
Caruana, R., &Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).
Barlow, H. B. (1989). Unsupervised learning. Neural computation, 1(3), 295-311
Ghahramani, Z. (2003, February). Unsupervised learning. In Summer School on Machine Learning (pp. 72-112). Springer, Berlin, Heidelberg
Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1-130
Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35.
Goodfellow, I., Bengio, Y., Courville, A., &Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press
Tang, D., & Zhang, M. (2018). Deep learning in sentiment analysis. In Deep Learning in Natural Language Processing (pp. 219-253). Springer, Singapore
Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., &Rehman, A. (2017). Sentiment analysis using deep learning techniques: a review. Int J AdvComputSciAppl, 8(6), 424
Ho, J. W. Y. (2007). Code-mixing: Linguistic form and socio-cultural meaning. The International Journal of Language Society and Culture, 21(7), 1-8.
Kachru, B. B. (1978). Toward structuring code-mixing: an Indian perspective
Bali, K., Sharma, J., Choudhury, M., & Vyas, Y. (2014, October). “I am borrowing ya mixing?" An Analysis of English-Hindi Code Mixing in Facebook. In Proceedings of the First Workshop on Computational Approaches to Code Switching (pp. 116-126)
Joshi, A., Prabhu, A., Shrivastava, M., &Varma, V. (2016, December). Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers (pp. 2482-2491)
Sharma, S., Srinivas, P. Y. K. L., &Balabantaray, R. C. (2015, August). Text normalization of code mix and sentiment analysis. In 2015 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1468-1473). IEEE
Singh, G. (2021). Sentiment Analysis of Code-Mixed Social Media Text (Hinglish). arXiv preprint arXiv:2102.12149
Mishra, P., Danda, P., &Dhakras, P. (2018). Code-Mixed Sentiment Analysis Using Machine Learning and Neural Network Approaches. arXiv preprint arXiv:1808.03299
Baroi, S. J., Singh, N., Das, R., & Singh, T. D. (2020, December). NITS-Hinglish-SentiMix at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using an Ensemble Model. In Proceedings of the Fourteenth Workshop on Semantic Evaluation (pp. 1298-1303)
Das, A., &Gambäck, B. (2015). Code-mixing in social media text: the last language identification frontier?
Vijay, D., Bohra, A., Singh, V., Akhtar, S. S., &Shrivastava, M. (2018, June). Corpus creation and emotion prediction for hindi-english code-mixed social media text. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop (pp. 128-135)
Pravalika, A., Oza, V., Meghana, N. P., & Kamath, S. S. (2017, July). Domain-specific sentiment analysis approaches for code-mixed social network data. In 2017 8th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1-6). IEEE
Kumar, V., &Dhar, M. (2018). Looking Beyond the Obvious: Code-Mixed Sentiment Analysis (CMSA)
Choudhary, N., Singh, R., Bindlish, I., &Shrivastava, M. (2018). Sentiment analysis of code-mixed languages leveraging resource rich languages. arXiv preprint arXiv:1804.00806
Ansari, M. A., &Govilkar, S. (2018). Sentiment analysis of mixed code for the transliterated hindi and marathi texts. International Journal on Natural Language Computing (IJNLC) Vol, 7
Sasidhar, T. T., Premjith, B., &Soman, K. P. (2020). Emotion Detection in Hinglish (Hindi+ English) Code-Mixed Social Media Text. Procedia Computer Science, 171, 1346-1352
Jhanwar, M. G., & Das, A. (2018). An ensemble model for sentiment analysis of Hindi-English code-mixed data. arXiv preprint arXiv:1806.04450
Garg, N., & Sharma, K. (2020). Annotated corpus creation for sentiment analysis in code-mixed Hindi-English (Hinglish) social network data. Indian Journal of Science and Technology, 13(40), 4216-4224
Garg, N., & Sharma, K. (2020). Annotated corpus creation for sentiment analysis in code-mixed Hindi-English (Hinglish) social network data. Indian Journal of Science and Technology, 13(40), 4216-4224
Sharma, S., Srinivas, P. Y. K. L., &Balabantaray, R. C. (2015, August). Text normalization of code mix and sentiment analysis. In 2015 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1468-1473). IEEE
Ghosh, S., Ghosh, S., & Das, D. (2017). Sentiment identification in code-mixed social media text. arXiv preprint arXiv:1707.01184
Mandal, S., & Das, D. (2018). Analyzing roles of classifiers and code-mixed factors for sentiment identification. arXiv preprint arXiv:1801.02581
Raha, T., Mahata, S. K., Das, D., &Bandyopadhyay, S. (2020). Development of POS tagger for English-Bengali Code-Mixed data. arXiv preprint arXiv:2007.14576
Mandal, S., Mahata, S. K., & Das, D. (2018). Preparing bengali-english code-mixed corpus for sentiment analysis of indian languages. arXiv preprint arXiv:1803.04000
Singh, R., Choudhary, N., &Shrivastava, M. (2018). Automatic normalization of word variations in code-mixed social media text. arXiv preprint arXiv:1804.00804
Mishra, P., Danda, P., &Dhakras, P. (2018). Code-Mixed Sentiment Analysis Using Machine Learning and Neural Network Approaches. arXiv preprint arXiv:1808.03299
Jamatia, A., Das, A., &Gambäck, B. (2019). Deep learning-based language identification in English-Hindi-Bengali code-mixed social media corpora. Journal of Intelligent Systems, 28(3), 399-408
Chakravarthi, B. R., Priyadharshini, R., Muralidaran, V., Suryawanshi, S., Jose, N., Sherly, E., & McCrae, J. P. (2020, December). Overview of the track on sentiment analysis for dravidian languages in code-mixed text. In Forum for Information Retrieval Evaluation (pp. 21-24)
Banerjee, S., Jayapal, A., &Thavareesan, S. (2020). NUIG-Shubhanker@ Dravidian-CodeMix-FIRE2020: Sentiment Analysis of Code-Mixed Dravidian text using XLNet. arXiv preprint arXiv:2010.07773
Chakravarthi, B. R., Muralidaran, V., Priyadharshini, R., & McCrae, J. P. (2020). Corpus creation for sentiment analysis in code-mixed Tamil-English text. arXiv preprint arXiv:2006.00206
Ranjan, P., Raja, B., Priyadharshini, R., &Balabantaray, R. C. (2016, December). A comparative study on code-mixed data of Indian social media vs formal text. In 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I) (pp. 608-611). IEEE
Padmaja, S., Bandu, S., & Fatima, S. S. (2019, March). Text Processing of Telugu–English Code Mixed Languages. In International Conference on Emerging Trends in Engineering (pp. 147-155). Springer, Cham
Gundapu, S., &Mamidi, R. (2020). Word level language identification in englishtelugu code mixed data. arXiv preprint arXiv:2010.04482
Nelakuditi, K. (2017). Towards Building a Shallow Parsing Pipeline for English-Telugu Code Mixed Social Media Data (Doctoral dissertation, Master’s thesis, International Institute of Information Technology, Hyderabad)
Mukund, S., &Srihari, R. K. (2012, June). Analyzing Urdu social media for sentiments using transfer learning with controlled translations. In Proceedings of the Second Workshop on Language in Social Media (pp. 1-8)
Mahmood, Z., Safder, I., Nawab, R. M. A., Bukhari, F., Nawaz, R., Alfakeeh, A. S., ...& Hassan, S. U. (2020). Deep sentiments in Roman Urdu text using recurrent convolutional neural network model. Information Processing & Management, 57(4), 102233
Rafique, A., Malik, M. K., Nawaz, Z., Bukhari, F., &Jalbani, A. H. (2019). Sentiment analysis for roman urdu. Mehran University Research Journal of Engineering & Technology, 38(2), 463
Singh, M., Goyal, V., & Raj, S. (2019, November). Sentiment analysis of english-punjabi code mixed social media content for agriculture domain. In 2019 4th International Conference on Information Systems and Computer Networks (ISCON) (pp. 352-357). IEEE
Yadav, K., Lamba, A., Gupta, D., Gupta, A., Karmakar, P., & Saini, S. (2020, October). Bilingual Sentiment Analysis for a Code-mixed Punjabi English Social Media Text. In 2020 5th International Conference on Computing, Communication and Security (ICCCS) (pp. 1-5). IEEE
Singh, M., Goyal, V., & Raj, S. (2021). Sentiment Analysis of English-Punjabi Code-Mixed Social Media Content to Predict Elections. In Advances in Information Communication Technology and Computing (pp. 81-90). Springer, Singapore
Bansal, N., Goyal, V., & Rani, S. (2020). Experimenting language identification for sentiment analysis of englishpunjabi code mixed social media text. International Journal of E-Adoption (IJEA), 12(1), 52-62
Ansari, M. A., &Govilkar, S. (2018). Sentiment analysis of mixed code for the transliterated hindi and marathi texts. International Journal on Natural Language Computing (IJNLC) Vol, 7
Lakshmi, B. S., &Shambhavi, B. R. (2017, December). An automatic language identification system for code-mixed English-Kannada social media text. In 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS) (pp. 1-5). IEEE
Lamabam, P., &Chakma, K. (2016, March). A language identification system for code-mixed English-Manipuri Social Media text. In 2016 IEEE International Conference on Engineering and Technology (ICETECH) (pp. 79-83). IEEE
Manihuruk, L. M. E. (2016). An Analysis Of Code Mixing In Facebook Status. The Episteme Journal of Linguistics and Literature, 2
Syafaat, P. M. F., &Setiawan, T. (2019, April). An Analysis of Code Mixing in Twitter. In International Conference on Interdisciplinary Language, Literature and Education (ICILLE 2018) (pp. 276-281). Atlantis Press
Das, A., &Bandyopadhyay, S. (2010). Sentiwordnet for bangla. Knowledge Sharing Event-4: Task, 2, 1-8
Sharma, R., & Bhattacharyya, P. (2014, December). A sentiment analyzer for hindi using hindisenti lexicon. In Proceedings of the 11th International Conference on Natural Language Processing (pp. 150-155).
Bakliwal, A., Arora, P., &Varma, V. (2012, May). Hindi subjective lexicon: A lexical resource for hindi polarity classification. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC) (pp. 1189-1196).
Das, A., &Bandyopadhyay, S. (2010, August). SentiWordNet for Indian languages. In Proceedings of the eighth workshop on Asian language resouces (pp. 56-63).
Kannan, A., Mohanty, G., &Mamidi, R. (2016, December). Towards building a SentiWordNet for Tamil. In Proceedings of the 13th International Conference on Natural Language Processing (pp. 30-35).
Mohanty, G., Kannan, A., &Mamidi, R. (2017, September). Building a sentiwordnet for odia. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 143-148).
DikshaGoyal&Gurpreet Singh Josan (2018, June) Automatic Sentiment Lexicon Construction For Punjabi in An International Journal of Engineering Sciences Issue June 2018, Vol. 30, Web Presence: http://ijoes.vidyapublications.com
Asghar, M. Z., Sattar, A., Khan, A., Ali, A., MasudKundi, F., & Ahmad, S. (2019). Creating sentiment lexicon for sentiment analysis in Urdu: The case of a resource‐poor language. Expert Systems, 36(3), e12397.
Deepamala, N., & Kumar, R. (2015, June). Polarity detection of Kannada documents. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 764-767). IEEE
Anagha, M., Kumar, R. R., Sreetha, K., Rajeev, R., & Raj, P. R. (2014). Lexical resource based hybrid approach for cross domain sentiment analysis in Malayalam. Int J EngSci, 15, 18-21.
Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., &Shrivastava, M. (2018, June). A dataset of Hindi-English code-mixed social media text for hate speech detection. In Proceedings of the second workshop on computational modeling of people’s opinions, personality, and emotions in social media (pp. 36-41).
Swami, S., Khandelwal, A., Singh, V., Akhtar, S. S., &Shrivastava, M. (2018). A corpus of english-hindi code-mixed tweets for sarcasm detection. arXiv preprint arXiv:1805.11869
Sreelakshmi, K., Premjith, B., &Soman, K. P. (2020). Detection of Hate Speech Text in Hindi-English Code-mixed Data. Procedia Computer Science, 171, 737-744.
Singh, K., Sen, I., &Kumaraguru, P. (2018, July). A twitter corpus for Hindi-English code mixed POS tagging. In Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media (pp. 12-17).
Banerjee, S., Moghe, N., Arora, S., &Khapra, M. M. (2018). A dataset for building code-mixed goal oriented conversation systems. arXiv preprint arXiv:1806.05997.
Mishra, P., Danda, P., &Dhakras, P. (2018). Code-Mixed Sentiment Analysis Using Machine Learning and Neural Network Approaches. arXiv preprint arXiv:1808.03299.
. Jamatia, B. Gambäck, and A. Das. Collecting and Annotating Indian Social Media Code-Mixed Corpora. In the proceeding of the 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLING), April 3–9, 2016, Konya, Turkey.
Chakravarthi, B. R., Muralidaran, V., Priyadharshini, R., & McCrae, J. P. (2020). Corpus creation for sentiment analysis in code-mixed Tamil-English text. arXiv preprint arXiv:2006.00206.
Yadav, K., Lamba, A., Gupta, D., Gupta, A., Karmakar, P., & Saini, S. (2020, October). Bilingual Sentiment Analysis for a Code-mixed Punjabi English Social Media Text. In 2020 5th International Conference on Computing, Communication and Security (ICCCS) (pp. 1-5). IEEE.
Veena, P. V., Anand Kumar, M., &Soman, K. P. (2018). Character embedding for language identification in Hindi-English code-mixed social media text. Computación y Sistemas, 22(1), 65-74.
Singh, K., Sen, I., &Kumaraguru, P. (2018, July). Language identification and named entity recognition in hinglish code mixed tweets. In Proceedings of ACL 2018, Student Research Workshop (pp. 52-58).
Veena, P. V., Kumar, M. A., &Soman, K. P. (2017, September). An effective way of word-level language identification for code-mixed facebook comments using word-embedding via character-embedding. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1552-1556). IEEE.
Bora, M. J., & Kumar, R. (2018, May). Automatic word-level identification of language in assamese english hindi code-mixed data. In 4th Workshop on Indian Language Data and Resources, Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. 7-12).
Jauhiainen, T., Ranasinghe, T., &Zampieri, M. (2021). Comparing Approaches to Dravidian Language Identification. arXiv preprint arXiv:2103.05552.
, R., & Joshi, R. (2020). Evaluating Input Representation for Language Identification in Hindi-English Code Mixed Text. arXiv preprint arXiv:2011.11263.
Sinha, N., &Srinivasa, G. (2014). Hindi-English Language Identification, Named Entity Recognition and Back Transliteration: Shared Task System Description. In Working Notes os Shared Task on Transliterated Search at Forum for Information Retrieval Evaluation FIRE’14.
Patra, B. G., Das, D., & Das, A. (2018). Sentiment analysis of code-mixed Indian languages: an overview of SAIL_Code-Mixed Shared Task@ ICON-2017. arXiv preprint arXiv:1803.06745
Jamatia, A., Gambäck, B., & Das, A. (2015). Part-of-speech tagging for code-mixed English-Hindi Twitter and Facebook chat messages. Association for Computational Linguistics.
Pimpale, P. B., & Patel, R. N. (2016). Experiments with POS tagging code-mixed Indian social media text. arXiv preprint arXiv:1610.09799.
Bhange, M., &Kasliwal, N. (2020). HinglishNLP: Fine-tuned Language Models for Hinglish Sentiment Detection. arXiv preprint arXiv:2008.09820.
Younas, A., Nasim, R., Ali, S., Wang, G., & Qi, F. (2020, December). Sentiment Analysis of Code-Mixed Roman Urdu-English Social Media Text using Deep Learning Approaches. In 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE) (pp. 66-71). IEEE.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.


