Digital Image Steganography in the Spatial Domain Using Block-Chain Technology to Provide Double-Layered Protection to Confidential Data Without Transferring the Stego-Object

Authors

  • K. S. Suresh Dept. of Computer Science, Rajeswari Vedachalam Government Arts College, Chengalpattu, Research Scholar, VISTAS, Chennai, India
  • T. Kamalakannan Head, Department of Information Technology, School of Computing Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India

Keywords:

block-chain, steganography, intruder, stego-object, CRC, hash value

Abstract

The block-chain technology is an emerging trend in the distributed ledger model, and it gives a security feature to all the nodes and their data. Steganography is also helping the user with private data transmission. These two technologies tightly tie up together to make a new model in the data security field. All the conventional steganography algorithms should transfer the stego-object from one end to another. During the transmission time, if an intruder attacks the stego-object, the receiver cannot retrieve the sender's original messages. The proposed method overcomes this issue, using block-chain technology with the hashing technique and linked list data structures. Instead of transmission of stego-object, only the linked list and the stego-key values only transmitted in the block-chain technology from one end to another. Every data in the linked list and stego-object are secured with CRC. The block-chain technology also provides the second layer of protection to the confidential data with the hash values. Suppose any node in block-chain got modified by an intruder. In that case, the network itself is identified using the hash index value, and the intruder cannot be able to get access to the messages and cannot attack all the nodes in the block-chain network. In general, all the steganography algorithms create a stego-object then we have to compare that with the existing models' output with the two different parameters like payload and distraction of the stego-object. But the proposed method does not create the stego-object; instead of the stego-object, it creates a list of values and passes through the block-chain technology, so output values are not compared with the existing models.

Downloads

Download data is not yet available.

References

C. Navadiya and N. Sanghani, “Comparative Survey of Digital Image Steganography Spatial Domain Techniques,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 52, 2021.

B. Siddiqui and S. Goswami, “a Survey on Image Steganography Using Lsb Substitution Technique,” Int. Res. J. Eng. Technol., 2017.

P. Agrawal and A. Upadhyay, “A Survey of Different Steganography Technique using Cryptographic Algorithm,” Asian J. Comput. Sci. Technol., vol. 7, no. 2, 2018, doi: 10.51983/ajcst-2018.7.2.1884.

J. Li, X. Wang, Z. Huang, L. Wang, and Y. Xiang, “Multi-level multi-secret sharing scheme for decentralized e-voting in cloud computing,” J. Parallel Distrib. Comput., vol. 130, 2019, doi: 10.1016/j.jpdc.2019.04.003.

A. G. Salman, Rojali, and Vivi, “Steganography using pixel value differencing spiral,” J. Theor. Appl. Inf. Technol., vol. 75, no. 1, 2015.

O. C. Abikoye and R. O. Ogundokun, “Efficiency of LSB steganography on medical information,” Int. J. Electr. Comput. Eng., vol. 11, no. 5, 2021, doi: 10.11591/ijece.v11i5.pp4157-4164.

M. Naz et al., “A Secure Data Sharing Platform Using Blockchain and Interplanetary File System,” Sustain., vol. 11, no. 24, pp. 1–24, 2019, doi: 10.3390/su11247054.

J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-Based Secure Storage and Access Scheme for Electronic Medical Records in IPFS,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS. 2020.2982964.

J. Guo, C. Li, G. Zhang, Y. Sun, and R. Bie, “Blockchain-enabled digital rights management for multimedia resources of online education,” Multimed. Tools Appl., vol. 79, no. 15–16, 2020, doi: 10.1007/s11042-019-08059-1.

Z. Zhang and L. Zhao, “A design of digital rights management mechanism based on blockchain technology,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 10974 LNCS, doi: 10.1007/978-3-319-94478-4_3.

M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of Trust: A decentralized blockchain-based authentication system for IoT,” Comput. Secur., vol. 78, 2018, doi: 10.1016/j.cose.2018.06.004.

G. L. Smitha and E. Baburaj, “A survey on image steganography based on block-based edge adaptive based on Least Significant Bit Matched Revisited (LSBMR) algorithm,” 2017, doi: 10.1109/ICCICCT.2016.7987931.

D. N. Aini, D. R. I. M. Setiadi, S. N. Putro, E. H. Rachmawanto, and C. A. Sari, “Survey of Methods in the Spatial Domain Image Steganography based Imperceptibility and Payload Capacity,” 2019, doi: 10.1109/ISEMANTIC.2019.8884333.

G. Swain, “Digital image steganography using nine-pixel differencing and modified LSB substitution,” Indian J. Sci. Technol., vol. 7, no. 9, 2014, doi: 10.17485/ijst/2014/v7i9.27.

K. Bansal, A. Agrawal, and N. Bansal, “A Survey on Steganography using Least Significant bit (LSB) Embedding Approach,” 2020, doi: 10.1109/ICOEI48184.2020.9142896.

H. Zhou, W. Zhang, K. Chen, W. Li, and N. Yu, “Three-Dimensional Mesh Steganography and Steganalysis: A Review,” IEEE Trans. Vis. Comput. Graph., 2021, doi: 10.1109/TVCG.2021.3075136.

M. Pavani, S. Naganjaneyulu, and C. Nagaraju, “A Survey on LSB Based Steganography Methods,” 2013.

S. S. N. Bhuiyan, N. A. Malek, O. O. Khalifa, and F. D. A. Rahman, “An improved image steganography algorithm based on PVD,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, 2018, doi: 10.11591/ijeecs.v10.i2.pp569-577.

S. SOLAK and U. ALTINIand350IK, “LSB Substitution and PVD performance analysis for image steganography,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, 2018, doi: 10.26438/ijcse/v6i10.14.

J. Chen, “A PVD-based data hiding method with histogram preserving using pixel pair matching,” Signal Process. Image Commun., vol. 29, no. 3, 2014, doi: 10.1016/j.image.2014.01.003.

A. O. Modupe, A. E. Adedoyin, and A. O. Titilayo, “A Comparative Analysis of LSB, MSB and PVD Based Image Steganography,” Int. J. Res. Rev., vol. 8, no. 9, 2021, doi: 10.52403/ijrr.20210948.

N. J. R. Rao, “Data Hiding using Edge-based Image Steganography,” Int. J. Sci. Res., vol. 6, no. 4, pp. 176–180, 2017, [Online]. Available: https://www.ijsr.net/archive/v6i4/ ART20172193.pdf.

R. K. S. Et. al., “Digital Transformation In Indian Insurance Industry,” Turkish J. Comput. Math. Educ., vol. 12, no. 4, 2021, doi: 10.17762/turcomat.v12i4.509.

C. C. Chang and H. W. Tseng, “A steganographic method for digital images using side match,” Pattern Recognit. Lett., vol. 25, no. 12, 2004, doi: 10.1016/j.patrec.2004.05.006.

S. A. Thanekar and S. S. Pawar, “OCTA (STAR) PVD: A different approach of image steganopgraphy,” 2013, doi: 10.1109/ICCIC.2013.6724139.

G. Swain, “A Steganographic Method Combining LSB Substitution and PVD in a Block,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 39–44, 2016, doi: 10.1016/j.procs.2016.05.174.

W. Bin Lin, T. H. Lai, and K. C. Chang, “Statistical feature-based steganalysis for pixel-value differencing steganography,” EURASIP J. Adv. Signal Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13634-021-00797-5.

I. H. Pan, K. C. Liu, and C. L. Liu, “Chi-square detection for PVD steganography,” 2020, doi: 10.1109/IS3C50286.2020.00015.

J. Salunkhe and S. Sirsikar, “Pixel Value Differencing a Steganographic method: A Survey,” Int. Conf. Recent Trends Eng. Technol. - 2013, vol. ICRTET 201, 2013.

S. Y. Shen and L. H. Huang, “A data hiding scheme using pixel value differencing and improving exploiting modification directions,” Comput. Secur., vol. 48, 2015, doi: 10.1016/j.cose.2014.07.008.

“Exploration of Block Chain Technology in Data Security Field,” in 2019 5th International Conference on Advanced Computing, Networking and Security (ADCONS 2019), 2019, vol. 1, doi: 10.33969/eecs.v1.007.

S. Muthamilselvan, N. Praveen, S. Suresh, and V. Sanjana, “E-DOC Wallet Using Blockchain,” 2018, doi: 10.1109/CESYS. 2018.8724054.

D. Li, Z. Cai, L. Deng, X. Yao, and H. H. Wang, “Information security model of block chain based on intrusion sensing in the IoT environment,” Cluster Comput., vol. 22, 2019, doi: 10.1007/s10586-018-2516-1.

A. Wu, Y. Zhang, X. Zheng, R. Guo, Q. Zhao, and D. Zheng, “Efficient and privacy-preserving traceable attribute-based encryption in blockchain,” Ann. des Telecommun. Telecommun., vol. 74, no. 7–8, 2019, doi: 10.1007/s12243-018-00699-y.

Block-Chain model

Downloads

Published

27.01.2023

How to Cite

Suresh, K. S. ., & Kamalakannan, T. . (2023). Digital Image Steganography in the Spatial Domain Using Block-Chain Technology to Provide Double-Layered Protection to Confidential Data Without Transferring the Stego-Object. International Journal of Intelligent Systems and Applications in Engineering, 11(2s), 61–68. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2508

Issue

Section

Research Article