Enhancing Data Integrity in Blockchain through Fuzzy Augmented Lagrangian Optimization and Compact Blocks to Minimize Redundancy

Authors

  • M. Gracy Dept of Comp Appln, CSH, SRMIST, Kattankulathur – 603403, INDIA
  • Rebecca Jeyavadhanam Balasundaram Dept of Comp Science, York St John University London, UK
  • S. Albert Antony Raj Dept of Comp Appln, CSH, SRMIST, Kattankulathur – 603403, INDIA

Keywords:

Blockchain, Compact blocks, Merkle Tree, Augmented Lagrangian Optimization, Data Redundancy

Abstract

Blockchain is a method of storing data that makes it difficult or impossible to modify, steal, or swindle the system. Every block in a blockchain has its header with the unique nonce, timestamp, hash, the previous hash, transaction data, and the Merkle root. The Merkle tree is crucial in a block for consolidating data into a single hash, but it can suffer from data redundancy concerns during its structure formation. The central focus of the paper revolves around data redundancy and presents a novel approach for ensuring data integrity in blockchain with a compactness technique. Compactness is accomplished using Fuzzy Augmented Lagrangian Optimization to reduce data redundancy (FALORR). We integrate compact blocks into regular blockchain setup, bringing out a faster and more efficient way to reduce memory requirements. This effectual transaction verification structure improves the overall security and efficiency of the blockchain network by detecting and preventing malicious activities. To evaluate the effectiveness of the proposed system, we employed Hyperledger Caliper, a specialized benchmarking tool tailored for gauging the performance of blockchain solutions. The results of our implementation and evaluation demonstrate the effectiveness of the proposed structure in minimizing data redundancy and maintaining the data integrity of transactions in the blockchain system.

Downloads

Download data is not yet available.

References

David Berdika, Safa Otoum, Nikolas Schmidta, Dylan Portera, and Yaser Jararweh, “A Survey on Blockchain for Information Systems Management and Security”, doi: doi.org/10.1016/j.ipm.2020.10239.

O. Ali, A. Jaradat, A. Kulakli, and A. Abuhalimeh, “A Comparative Study: Blockchain Technology Utilization Benefits, Challenges and Functionalities,” IEEE Access, vol. 9, pp. 12730–12749, 2021, doi: 10.1109/ACCESS.2021.3050241.

F. Lumineau, W. Wang, and O. Schilke, “Blockchain Governance—A New Way of Organizing Collaborations?,” Organ. Sci., vol. 32, no. 2, pp. 500–521, Mar. 2021, doi: 10.1287/orsc.2020.1379.

S. Das, S. Namasudra, and V. H. C. De Albuquerque, “Blockchain technology: fundamentals, applications, and challenges,” in Blockchain Technology in e-Healthcare Management, S. Namasudra and V. H. C. De Albuquerque, Eds., Institution of Engineering and Technology, 2022, pp. 1–30. doi: 10.1049/PBHE048E_ch1.

M. E. Khatib, F. Beshwari, M. Beshwari, and A. Beshwari, “The Impact of Blockchain on Project Management.” ICIC International 学会, 2021. doi: 10.24507/icicel.15.05.467.

S. M. Idrees, M. Nowostawski, R. Jameel, and A. K. Mourya, “Security Aspects of Blockchain Technology Intended for Industrial Applications,” Electronics, vol. 10, no. 8, p. 951, Apr. 2021, doi: 10.3390/electronics10080951.

G. S. Sajja, K. P. Rane, K. Phasinam, T. Kassanuk, E. Okoronkwo, and P. Prabhu, “Towards applicability of blockchain in agriculture sector,” Mater. Today Proc., vol. 80, pp. 3705–3708, 2023, doi: 10.1016/j.matpr.2021.07.366.

M. Javaid, A. Haleem, R. Pratap Singh, S. Khan, and R. Suman, “Blockchain technology applications for Industry 4.0: A literature-based review,” Blockchain Res. Appl., vol. 2, no. 4, p. 100027, Dec. 2021, doi: 10.1016/j.bcra.2021.100027.

G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany, “Emerging Trends in Blockchain Technology and Applications: A Review and Outlook,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 6719–6742, Oct. 2022, doi: 10.1016/j.jksuci.2022.03.007.

Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”

H. Liu, X. Luo, H. Liu, and X. Xia, “Merkle Tree: A Fundamental Component of Blockchains,” in 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China: IEEE, Sep. 2021, pp. 556–561. doi: 10.1109/EIECS53707.2021.9588047.

Z. Liu, L. Ren, Y. Feng, S. Wang, and J. Wei, “Data Integrity Audit Scheme Based on Quad Merkle Tree and Blockchain,” IEEE Access, vol. 11, pp. 59263–59273, 2023, doi: 10.1109/ACCESS.2023.3240066.

Tan Tao, “Research on Pow Scheme and Blockchain Security Technology Based on Merkel Tree,” vol. 3, no. 4, 2021.

R. Johari, V. Kumar, K. Gupta, and D. P. Vidyarthi, “BLOSOM: BLOckchain technology for Security Of Medical records,” ICT Express, vol. 8, no. 1, pp. 56–60, Mar. 2022, doi: 10.1016/j.icte.2021.06.002.

J. Misic, V. B. Misic, and X. Chang, “On the Benefits of Compact Blocks in Bitcoin,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland: IEEE, Jun. 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9149418.

R. Kalis and A. Belloum, “Validating Data Integrity with Blockchain,” in 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Nicosia: IEEE, Dec. 2018, pp. 272–277. doi: 10.1109/CloudCom2018.2018.00060.

W. Choi and J. W.-K. Hong, “Performance Evaluation of Ethereum Private and Testnet Networks Using Hyperledger Caliper,” in 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan, Taiwan: IEEE, Sep. 2021, pp. 325–329. doi: 10.23919/APNOMS52696.2021.9562684.

M. S. Rahman, M. A. P. Chamikara, I. Khalil, and A. Bouras, “Blockchain-of-blockchains: An interoperable blockchain platform for ensuring IoT data integrity in smart city,” J. Ind. Inf. Integr., vol. 30, p. 100408, Nov. 2022, doi: 10.1016/j.jii.2022.100408.

L. Hang and D.-H. Kim, “Design and Implementation of an Integrated IoT Blockchain Platform for Sensing Data Integrity,” Sensors, vol. 19, no. 10, p. 2228, May 2019, doi: 10.3390/s19102228.

T. Alam, “Blockchain-Based Big Data Integrity Service Framework for IoT Devices Data Processing in Smart Cities,” SSRN Electron. J., 2021, doi: 10.2139/ssrn.3869042.

S. Hariharasitaraman and S. P. Balakannan, “A dynamic data security mechanism based on position aware Merkle tree for health rehabilitation services over cloud,” J. Ambient Intell. Humaniz. Comput., Jul. 2019, doi: 10.1007/s12652-019-01412-0.

P. Mohan, Mohamed Asfak R., and A. Gladston, “Merkle Tree and Blockchain-Based Cloud Data Auditing:,” Int. J. Cloud Appl. Comput., vol. 10, no. 3, pp. 54–66, Jul. 2020, doi: 10.4018/IJCAC.2020070103.

Mizrahi, N. Koren, and O. Rottenstreich, “Optimizing Merkle Proof Size for Blockchain Transactions,” in 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India: IEEE, Jan. 2021, pp. 299–307. doi: 10.1109/COMSNETS51098.2021.9352820.

G. Zhang, G. Wang, C.-H. Chen, X. Cao, Y. Zhang, and P. Zheng, “Augmented Lagrangian coordination for energy-optimal allocation of smart manufacturing services,” Robot. Comput.-Integr. Manuf., vol. 71, p. 102161, Oct. 2021, doi: 10.1016/j.rcim.2021.102161.

G. Zhang, Y. Zhang, R. Y. Zhong, and Y. Wu, “Extending augmented Lagrangian coordination for the optimal configuration of cloud-based smart manufacturing services with production capacity constraint,” Robot. Comput.-Integr. Manuf., vol. 58, pp. 21–32, Aug. 2019, doi: 10.1016/j.rcim.2019.01.009.

L. Dhavamani and P. Prem Priya, “Energy‐efficient and privacy‐preserving approach for INTERNET OF THINGS nodes using a novel hybrid fuzzy water cycle and evaporation strategy and matrix‐based Rivest–Shamir–Adleman encryption algorithm,” Concurr. Comput. Pract. Exp., vol. 34, no. 27, p. e7336, Dec. 2022, doi: 10.1002/cpe.7336.

G. Habib, S. Sharma, S. Ibrahim, I. Ahmad, S. Qureshi, and M. Ishfaq, “Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing,” Future Internet, vol. 14, no. 11, p. 341, Nov. 2022, doi: 10.3390/fi14110341.

M. Hashemi Joo, Y. Nishikawa, and K. Dandapani, “Cryptocurrency, a successful application of blockchain technology,” Manag. Finance, vol. 46, no. 6, pp. 715–733, Aug. 2019, doi: 10.1108/MF-09-2018-0451.

J. Bao, D. He, M. Luo, and K.-K. R. Choo, “A Survey of Blockchain Applications in the Energy Sector,” IEEE Syst. J., vol. 15, no. 3, pp. 3370–3381, Sep. 2021, doi: 10.1109/JSYST.2020.2998791.

F. A. Sunny et al., “A Systematic Review of Blockchain Applications,” IEEE Access, vol. 10, pp. 59155–59177, 2022, doi: 10.1109/ACCESS.2022.3179690.

I. Ozdemir, I. M. Ar, and I. Erol, “Assessment of blockchain applications in travel and tourism industry,” Qual. Quant., vol. 54, no. 5–6, pp. 1549–1563, Dec. 2020, doi: 10.1007/s11135-019-00901-w.

J. Misic, V. B. Misic, and X. Chang, “Performance of Bitcoin Network With Synchronizing Nodes and a Mix of Regular and Compact Blocks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3135–3147, Oct. 2020, doi: 10.1109/TNSE.2020.3017453.

M. Saad et al., “Exploring the Attack Surface of Blockchain: A Comprehensive Survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 3, pp. 1977–2008, 2020, doi: 10.1109/COMST.2020.2975999.

Manuskin, M. Mirkin, and I. Eyal, “Ostraka: Secure Blockchain Scaling by Node Sharding,” in 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy: IEEE, Sep. 2020, pp. 397–406. doi: 10.1109/EuroSPW51379.2020.00060.

L. Zhang, T. Wang, and S. C. Liew, “Speeding up block propagation in Bitcoin network: Uncoded and coded designs,” Comput. Netw., vol.

206, p. 108791, Apr. 2022, doi: 10.1016/j.comnet.2022.108791.

“What is a Compact Block?" [Online]. Available: https://academy.bit2me.com/en/que-son-compact-block/

“Hyperledger Caliper A performance benchmark framework for blockchain." [Online]. Available: https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Hyperledger-Caliper-A-Performance-Benchmark-Framework-for-Multiple-DLTs_Haojun-Zhou.pdf

S. Aggarwal and N. Kumar, “Hyperledger,” in Advances in Computers, Elsevier, 2021, pp. 323–343. doi: 10.1016/bs.adcom.2020.08.016.

S. Wang, D. Zhang, and Y. Zhang, “Blockchain-Based Personal Health Records Sharing Scheme with Data Integrity Verifiable,” IEEE Access, vol. 7, pp. 102887–102901, 2019, doi: 10.1109/ACCESS.2019.2931531.

G. Xie, Y. Liu, G. Xin, and Q. Yang, “Blockchain-Based Cloud Data Integrity Verification Scheme with High Efficiency,” Secur. Commun. Netw., vol. 2021, pp. 1–15, Apr. 2021, doi: 10.1155/2021/9921209.

Y. E. Oktian, S. Heo, and H. Kim, “SIGNORA: A Blockchain-Based Framework for Dataflow Integrity Provisioning in an Untrusted Data Pipeline,” IEEE Access, vol. 10, pp. 89714–89731, 2022, doi: 10.1109/ACCESS.2022.3199878.

Mujawar, S. S. ., & Bhaladhare, P. R. . (2023). Effective Feature Selection Methods for User Sentiment Analysis using Machine Learning. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), 37–45. https://doi.org/10.17762/ijritcc.v11i3s.6153

Robert Roberts, Daniel Taylor, Juan Herrera, Juan Castro, Mette Christensen. Integrating Virtual Reality and Machine Learning in Education. Kuwait Journal of Machine Learning, 2(1). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/175

Kumar, S.A.S., Naveen, R., Dhabliya, D., Shankar, B.M., Rajesh, B.N. Electronic currency note sterilizer machine (2020) Materials Today: Proceedings, 37 (Part 2), pp. 1442-1444.

Downloads

Published

21.09.2023

How to Cite

Gracy, M. ., Balasundaram, R. J. ., & Raj, S. A. A. . (2023). Enhancing Data Integrity in Blockchain through Fuzzy Augmented Lagrangian Optimization and Compact Blocks to Minimize Redundancy. International Journal of Intelligent Systems and Applications in Engineering, 11(4), 387–401. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3536

Issue

Section

Research Article