Internet of Things and Machine Learning for Smart-Agriculture: Technologies, Practices, and Future Direction



Agricultural sensors, Smart Agriculture, Wireless technologies, Internet of things, Machine learning


Smart agriculture has quickly gained popularity due to the tremendous introduction, growth, and integration of modern techniques with conventional agriculture, including the internet of things (IoT), computer vision (CV), machine learning (ML), big data, edge computing, and cloud computing. With the use of inexpensive sensors, smart agriculture aims to improve the effectiveness and sustainability of agriculture. These comprise airflow, location, optical, and mechanical sensors. Along with the real-time monitoring, identification, and categorization of objects, these sensors can be used to gather information about the position of crops and assess the condition of the soil. Furthermore, because IoT and open wireless communication networks are used in smart-agriculture ecosystems, these channels are vulnerable to a variety of cyber threats and security concerns. It has been stated that these actions could have a significant negative impact on the economy of a wide range of nations due to the rise in harmful assaults on the agricultural industry. Without the necessity for a centralized authority, AI and blockchain can be utilized to address a number of difficulties related to the deployment and management of smart agriculture. The benefits of cloud computing include its capacity to manage enormous amounts of data while offering a range of storage alternatives. Edge computing, on the contrary hand, provides a faster response time and less latency. The technique smart agriculture systems are created is anticipated to change as a result of this interaction. As a consequence, the way these techniques are applied is changing paradigmatically.


Download data is not yet available.


Alahi, M. E. E., Xie, L., Mukhopadhyay, S., & Burkitt, L. (2017). A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Transactions on Industrial Electronics, 64(9), 7333-7341.

Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data-A Machine Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3254-3264.

Amatya, S.; Karkee, M.; Gongal, A.; Zhang, Q.; Whiting, M.D. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosyst. Eng. 2015, 146, 3-15.

Arunlal, K. S., & Rajkiran, S. N. (2018). Smart agriculture: IoT based precise and productive farming approach. International Journal of advanced Research, Ideas and Innovations in Technology, 4(6), 771-775.

Badhe, A., Kharadkar, S., Ware, R., Kamble, P., & Chavan, S. (2018). IOT based smart agriculture and soil nutrient detection system. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(4), 774-777.

Basnet, B., & Bang, J. (2018). The state-of-the-art of knowledge-intensive agriculture: A review on applied sensing systems and data analytics. Journal of Sensors, 2018, 1-13.

Binch, A.; Fox, C.W. Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland. Comput. Electron. Agric. 2017, 140, 123-138. [Google Scholar] [CrossRef][Green Version]

Business Insider. net-of-things-smart-agriculture-2016-10/.

Castañeda-Miranda, R.; Ventura-Ramos, E., Jr.; del RocíoPeniche-Vera, R.; Herrera-Ruiz, G. Fuzzy greenhouse climate control system based on a field programmable gate array. Biosyst. Eng. 2006, 94, 165-177.

Coopersmith, E.J.; Minsker, B.S.; Wenzel, C.E.; Gilmore, B.J. Machine learning assessments of soil drying for agricultural planning. Comput. Electron. Agric. 2014, 104, 93-104. [Google Scholar] [CrossRef]

Das, R. K., Manisha, P., & Dash, S. S. (2019). Smart agriculture system in india using internet of things. Springer Nature Singapore Pte Ltd, 758, 247-255.

Dinesh, M.; Saravanan, P. FPGA based real time monitoring system for agricultural field. Int. J. Electron. Comput. Sci. Eng. 2011, 1, 1514-1519.

Emerging Agriculture Technologies. Accessed April 05, 2019.

Feng, Y.; Peng, Y.; Cui, N.; Gong, D.; Zhang, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput. Electron. Agric. 2017, 136, 71-78. [Google Scholar] [CrossRef]

Fenila Naomi, J., Theepavishal, R. A., Madhuaravindh, K. S., & Tharuneshwar, V. (2019). Soil quality analysis and an efficient irrigation system using agro-sensors. International Journal of Engineering and Advanced Technology (IJEAT), 8(5), 703-706.

Ferentinos, K.P.; Katsoulas, N.; Tzounis, A.; Kittas, C.; Bartzanas, T. A climate control methodology based on wireless sensor networks in greenhouses. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17-22 August 2014; pp. 75-82.

Giorgetti, A.; Lucchi, M.; Tavelli, E.; Barla, M.; Gigli, G.; Casagli, N.; Dardari, D. A robust wireless sensor network for landslide risk analysis: System design, deployment, and field testing. IEEE Sens. J. 2016, 16, 6374-6386.

Hachem, S.; Mallet, V.; Ventura, R.; Pathak, A.; Issarny, V.; Raverdy, P.G.; Bhatia, R. Monitoring noise pollution using the urban civics middleware. In Proceedings of the 2015 IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March-2 April 2015; pp. 52-61.

Haefke, M.; Mukhopadhyay, S.C.; Ewald, H. A Zigbee based smart sensing platform for monitoring environmental parameters. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Binjiang, China, 10-12 May 2011; pp. 1-8.

Hu, H.; Pan, L.; Sun, K.; Tu, S.; Sun, Y.; Wei, Y.; Tu, K. Differentiation of deciduous-calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate analysis. Comput. Electron. Agric. 2017, 137, 150-156. [Google Scholar] [CrossRef]

Jirapond, M., Nathaphon, B., Siriwan, K., Narongsak, L., Apirat, W., & Pichetwut, N. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 156, 467-474.

Johann, A.L.; de Araújo, A.G.; Delalibera, H.C.; Hirakawa, A.R. Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener. Comput. Electron. Agric. 2016, 121, 420-428. [Google Scholar] [CrossRef]

Junaid, A. Application of Modern High Performance Networks; Bentham Science Publishers Ltd.: Oak Park, IL, USA, 2009; pp. 120-129.

Kung, H.-Y.; Kuo, T.-H.; Chen, C.-H.; Tsai, P.-Y. Accuracy Analysis Mechanism for Agriculture Data Using the Ensemble Neural Network Method. Sustainability 2016, 8, 735.

Lavanya, G., Rani, C., & Ganeshkumar, P. (2019). An automated low cost IoT based fertilizer intimation system for smart agriculture. Sustainable Computing: Informatics and Systems, 1, 1.

Liu, Z.; Huang, J.; Wang, Q.; Wang, Y.; Fu, J. Real-time barrier lakes monitoring and warning system based on wireless sensor network. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9-11 June 2013; pp. 551-554.

Maione, C.; Batista, B.L.; Campiglia, A.D.; Barbosa, F.; Barbosa, R.M. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Comput. Electron. Agric. 2016, 121, 101-107. [Google Scholar] [CrossRef]

Medela, A.; Cendón, B.; González, L.; Crespo, R.; Nevares, I. IoT multiplatform networking to monitor and control wineries and vineyards. In Proceedings of the 2013 Future Network Mobile Summit, Lisboa, Portugal, 3-5 July 2013; pp. 1-10.

Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput. Electron. Agric. 2017, 139, 103-114. [Google Scholar] [CrossRef]

Mekala, M. S., & Viswanathan, P. (2019). (t, n): Sensor Stipulation with THAM index for smart agriculture decision-making IoT system. Wireless Personal Communications.

Mohammadi, K.; Shamshirband, S.; Motamedi, S.; Petković, D.; Hashim, R.; Gocic, M. Extreme learning machine based prediction of daily dew point temperature. Comput. Electron. Agric. 2015, 117, 214-225. [Google Scholar] [CrossRef]

Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104-116. [Google Scholar] [CrossRef]

Nahvi, B.; Habibi, J.; Mohammadi, K.; Shamshirband, S.; Al Razgan, O.S. Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Comput. Electron. Agric. 2016, 124, 150-160. [Google Scholar] [CrossRef]

Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International Journal of Recent Technology and Engineering, 7(5), 98-102.

Nayyar, A., & Puri, V. (2016). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology (pp. 673-680).

Pantazi, X.-E.; Moshou, D.; Alexandridis, T.K.; Whetton, R.L.; Mouazen, A.M. Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57-65.

Pantazi, X.-E.; Moshou, D.; Bravo, C. Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 2016, 146, 193-202. [Google Scholar] [CrossRef]

Pantazi, X.E.; Tamouridou, A.A.; Alexandridis, T.K.; Lagopodi, A.L.; Kashefi, J.; Moshou, D. Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Comput. Electron. Agric. 2017, 139, 224-230. [Google Scholar] [CrossRef]

Patil, A.P.; Deka, P.C. An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs. Comput. Electron. Agric. 2016, 121, 385-392. [Google Scholar] [CrossRef]

Pavithra, D.S.; Srinath, M.S. GSM based automatic irrigation control system for efficient use of resources and crop planning by using an Android mobile. IOSR J. Mech. Civ. Eng. 2014, 11, 49-55.

Rajesh, D. Application of spatial data mining for agriculture. Int. J. Comput. Appl. 2011, 15, 7-9.

Raju, K. Lova & Veeramani, Vijayaraghavan. (2020). IoT Technologies in Agricultural Environment: A Survey. Wireless Personal Communications. 113.

Ramos, P.J.; Prieto, F.A.; Montoya, E.C.; Oliveros, C.E. Automatic fruit count on coffee branches using computer vision. Comput. Electron. Agric. 2017, 137, 9-22.

Raut, R., Varma, H., Mulla, C., & Pawar, V. R. (2018). Soil monitoring, fertigation, and irrigation system using IoT for agricultural application. In Y. C. Hu, S. Tiwari, & K. Mishra (Eds.), Trivedi intelligent communication and computational technologies. Lecture notes in networks and systems (Vol. 19). Singapore: Springer.

Ravindranath, K., Sai Bhargavi, Ch., Samaikya Reddy, K., & Sai Chandana, M. (2019). Cloud of things for smart agriculture. International Journal of Innovative Technology and Exploring Engineering, 8(6), 30-33.

Sai Prasanna, G. V., & Vijay Kumar, G. (2019). Controlling and monitoring the plant growth conditions using embedded systems. International Journal of Innovative Technology and Exploring Engineering, 8(6), 1552-1555.

Sakthipriya, N. An effective method for crop monitoring using wireless sensor network. Middle-East J. Sci. Res. 2014, 20, 1127-1132.

Satyanarayana, G.V.; Mazaruddin, S.D. Wireless sensor based remote monitoring system for agriculture using ZigBee and GPS. In Proceedings of the Conference on Advances in Communication and Control Systems-2013, Makka Wala, India, 6-8 April 2013.

Sengupta, S.; Lee, W.S. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosyst. Eng. 2014, 117, 51-61.

Senthilnath, J.; Dokania, A.; Kandukuri, M.; Ramesh, K.N.; Anand, G.; Omkar, S.N. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst. Eng. 2016, 146, 16-32.

Shaobo, Y.; Zhenjianng, C.; Xuesong, S.; Qingjia, M.; Jiejing, L.; Tingjiao, L.; Kezheng, W. The appliacation of bluetooth module on the agriculture expert System. In Proceedings of the 2010 2nd International Conference on Industrial and Information Systems, Dalian, China, 10-11 July 2010; Volume 1, pp. 109-112.

Song, Y.; Ma, J.; Zhang, X.; Feng, Y. Design of wireless sensor network-based greenhouse environment monitoring and automatic control system. J. Netw. 2012, 7, 838.

Statista. Accessed by January 26th, 2023.

Su, Y.; Xu, H.; Yan, L. Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi J. Biol. Sci. 2017, 24, 537-547.

Torres-Ruiz, M.; Juárez-Hipólito, J.H.; Lytras, M.D.; Moreno-Ibarra, M. Environmental noise sensing approach based on volunteered geographic information and spatio-temporal analysis with machine learning. In Proceedings of the International Conference on Computational Science and Its Applications, Beijing, China, 4-7 July 2016; pp. 95-110.

Udhaya N., Manjuparkavi R., Ramya R., (2018). International Journal of Advanced Research in Computer and Communication Engineering. 7(3), 84-86.

Zhang, M.; Li, C.; Yang, F. Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR) hyperspectral transmittance imaging. Comput. Electron. Agric. 2017, 139, 75-90. [Google Scholar] [CrossRef]

Zheng, R.; Zhang, T.; Liu, Z.; Wang, H. An EIoT system designed for ecological and environmental management of the Xianghe Segment of China's Grand Canal. Int. J. Sustain. Dev. World Ecol. 2016, 23, 372-380.

Johansson Anna, Maria Jansen, Anna Wagner, Anna Fischer, Maria Esposito. Machine Learning Techniques to Improve Learning Analytics. Kuwait Journal of Machine Learning, 2(2). Retrieved from

Kuna, S. L. ., & Prasad, A. K. . (2023). Deep Learning Empowered Diabetic Retinopathy Detection and Classification using Retinal Fundus Images. International Journal on Recent and Innovation Trends in Computing and Communication, 11(1), 117–127.

Maruthamuthu, R., Dhabliya, D., Priyadarshini, G.K., Abbas, A.H.R., Barno, A., Kumar, V. V. Advancements in Compiler Design and Optimization Techniques (2023) E3S Web of Conferences, 399, art. no. 04047




How to Cite

Kumari B. M., K. ., Sahay, E. ., Shahid, M. ., Shinde, P. S. ., & Puliyanjalil, E. . (2023). Internet of Things and Machine Learning for Smart-Agriculture: Technologies, Practices, and Future Direction. International Journal of Intelligent Systems and Applications in Engineering, 12(4s), 70–81. Retrieved from



Research Article