Using Virtual Reality in (Investigating-Simulating-Reconstructing) the Crime Scene

Authors

  • Amr Ezzat Elhaw
  • D. Jamal Alshehhi Department of law and criminal investigation Police Science Academy-Sharjah United Arab Emirates

Keywords:

Virtual reality, crime scene, investigation, simulation, reconstructing, evidence, investigators, forensic

Abstract

Currently, there's an increasing amount of academic research aimed to the advancement of virtual environments and situations that possess the capacity to offer fully immersive alternative experiences encompassing visual, tactile, and auditory modalities. Such endeavors hold promise for achieving a considerable degree of efficacy when appropriately applied. By conducting an in-depth examination of immersive virtual reality and its technology components, this study aims to explore suitable methodologies for efficiently reconstructing virtual criminal scenes. The process of crime scene reconstruction is of considerable importance in the field of criminal investigation as it aids in establishing the sequence of events that transpired. The primary objective of forensic crime scene documentation is to achieve non-invasive, high-resolution measurement and enhance the level of understanding. Nevertheless, conventional techniques are insufficient for the comprehensive reconstruction of complete crime scenes. The integration of three-dimensional visualization techniques enables the comprehensive examination of several forms of evidence collected at the crime scene, facilitating the construction of a coherent narrative. The information is conveyed through immersive virtual reality (VR) technology instead of being exhibited on conventional computer screens. The interconnections across evidence chains facilitate the attainment of a comprehensive reconstruction of a crime scene. This is accomplished by the utilization of expert knowledge and computer-assisted forensic technologies to scrutinize the origins of damage and ascertain the individuals potentially responsible. The utilization of three-dimensional imaging methodologies enables a more comprehensive examination and a variety of valuable analysis, including precise quantification, in many types of criminal incidents.

Downloads

Download data is not yet available.

References

Aalders, M.C.; Adolphi, N.L.; Daly, B.; Davis, G.G.; de Boer, H.H.; Decker, S.J.; Dempers, J.J.; Ford, J.; Gerrard, C.Y.; Hatch, G.M.; (2017) et al. Research in forensic radiology and imaging; Identifying the most important issues. J. Forensic Radiol. p1–8. [Google Scholar] [CrossRef]

Abreu de Souza, M.; Alka Cordeiro, D.C.; Oliveira, J.; Oliveira, M.F.A.; Bonafini, B.L(2023) 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction. Sensors 610. [Google Scholar] [CrossRef]

Bardi, J. (2019) What is Virtual Reality. [Online] Available at:

https://www.marxentlabs.com/what-is-virtual-reality/ [Accessed 29 March 2020].

Mazuryk, T. & Gervautz, M., (2019) History, Applications, Technology and Future. Virtual Reality -, 0(0), pp. 1-72.

Baier, W.; Warnett, J.M.; Payne, M.; Williams, M.A (2018) Introducing 3D Printed Models as Demonstrative Evidence at Criminal Trials. J. Forensic Sci., p298–302. [Google Scholar] [CrossRef]

Berger, C.; Bauer, M.; Wittig, H.; Scheurer, E.; Lenz, C (2022) Post mortem brain temperature and its influence on quantitative MRI of the brain. Magn. Reson. Mater. Phys. Biol. Med. p 375–387. [Google Scholar] [CrossRef]

Buck, U.; Busse, K.; Campana, L.; Schyma, C.(2018) Validation and evaluation of measuring methods for the 3D documentation of external injuries in the field of forensic medicine. Int. J. Leg. Med p551–561. [Google Scholar] [CrossRef] [PubMed]

Busch, J.R.; Lundemose, S.B.; Lynnerup, N.; Jacobsen, C.; Jorgensen, M.B.; Banner, J. (2019) Post-mortem MRI-based volumetry of the hippocampus in forensic cases of decedents with severe mental illness. Forensic Sci. Med. Pathol. p 213–217. [Google Scholar] [CrossRef]

Cubie, A.; Theologis, T.; Wolpert, D.; Abboud, R.; Baker, R.; Stebbins, J. Forensic (2017) Gait Analysis: A Primer for Courts; The Royal Society: London, UK [Google Scholar]

Dath, C (2017) Crime Scenes in Virtual Reality: A User Centered Study. Master’s Thesis, KTH Royal Institute of Technology in Stockholm, Stockholm, Sweden,. [Google Scholar]

Dormehl, L. (2017) 8 virtual reality milestones that took it from sci-fi to your living room. [Online] Available at: https://www.digitaltrends.com/cool-tech/history-of-virtual-reality/ [Accessed 29 March 2020].

Dustin, D.; Liscio, E (2016) Accuracy and Repeatability of the Laser Scanner and Total Station for Crime and Accident Scene Documentation. J. Assoc. Crime. Scene Reconstr. p57–68. [Google Scholar]

Ebert, L.C.; Dobay, A.; Franckenberg, S.; Thali, M.J.; Decker, S.; Ford, J (2022) Image segmentation of post-mortem computed tomography data in forensic imaging: Methods and applications. Forensic Imaging 200483. [Google Scholar] [CrossRef]

Engstrom, P (2019) Telepresence as a Forensic Visualization Tool.

Counterterrorism Crime Fight. Forensics Surveill. Technol. III , 11166, p90–96. [Google Scholar] [CrossRef]

Esaias, O.; Noonan, G.W.; Everist, S.; Roberts, M.; Thompson, C.; Krosch, M.N(2020) Improved Area of Origin Estimation for Bloodstain Pattern Analysis Using 3D Scanning. J. Forensic Sci. p722–728. [Google Scholar] [CrossRef] [PubMed]

ELKarazle, K.; Raman, V.; Then, P (2022) Facial Age Estimation Using Machine Learning Techniques: An Overview. Big Data Cogn. Comput.p 128. [Google Scholar] [CrossRef]

Fang, Y.T.; Lan, Q.; Xie, T.; Liu, Y.F.; Mei, S.Y.; Zhu, B.F (2020) New Opportunities and Challenges for Forensic Medicine in the Era of Artificial Intelligence Technology. Fa Yi Xue Za Zhi p77–85. [Google Scholar] [CrossRef] [PubMed]

Flies, M.J.; Larsen, P.K.; Lynnerup, N.; Villa, C (2018) Forensic 3D documentation of skin injuries using photogrammetry: Photographs vs video and manual vs automatic measurements. Int. J. Leg. Med. p963–971. [Google Scholar] [CrossRef] [PubMed]

Grabherr, S.; Baumann, P.; Minoiu, C.; Fahrni, S.; Mangin, P (2016) Post-mortem imaging in forensic investigations: Current utility, limitations, and ongoing developments. Res. Rep. Forensic Med. p25–37. [Google Scholar] [CrossRef]

Galligan, A.A.; Fries, C.; Melinek, J (2017) Gunshot wound trajectory analysis using forensic animation to establish relative positions of shooter and victim. Forensic Sci. Int. p271 [Google Scholar] [CrossRef]

Galvin, R.S (2020) Crime Scene Documentation, Preserving the Evidence and the Growing Role of 3D Laser Scanning; Taylor and Francis: Boca Raton, FL, USA. [Google Scholar]

Garland, J.; Ondruschka, B.; Stables, S.; Morrow, P.; Kesha, K.; Glenn, C.; Tse, R (2022) Identifying Fatal Head Injuries on Postmortem Computed Tomography Using Convolutional Neural Network/Deep Learning: A Feasibility Study. J. Forensic Sci. p 105. [Google Scholar] [CrossRef]

Harris, E.J.; Khoo, I.H.; Demircan, E.(2022) A Survey of Human Gait-Based Artificial Intelligence Applications. Front. Robot. p100 [Google Scholar] [CrossRef] [PubMed]

Home, P.H.; Norman, D.G.; Williams, M.A (2021) Software for the trajectory analysis of blood-drops: A systematic review star. Forensic Sci. Int. p328,. [Google Scholar] [CrossRef] [PubMed]

Hwang, J.; Jung, M.C (2015) Age and sex differences in ranges of motion and motion patterns. Int. J. Occup. Saf. Erg. p173–186. [Google Scholar] [CrossRef]

Jakobsen, L.S.; Lundemose, S.; Banner, J.; Lynnerup, N.; Jacobsen, C (2016) Forensic postmortem computed tomography: Volumetric measurement of the heart and liver. Forensic Sci. Med. Pathol. p 510–516. [Google Scholar] [CrossRef]

Jinming Wang,Zhengdong Li,Wenhu Hu,Yu Shao.Liyang Wang,and others ,(2019) Virtual reality and integrated crime scene scanning for immersive and heterogeneous crime scene reconsrtructing,fornsic science international ,Elsavier, https://www.sciencedirect.com/journal/forensic-science-international/vol/303/suppl/C

Kerbacher, S.; Pfeifer, M.; Webb, B.; Riener-Hofer, R ( 2017) Clinical forensic imaging and fundamental rights in Austria. Forensic Sci p65–74. [Google Scholar] [CrossRef]

Khan, M.H.; Farid, M.S.; Grzegorzek, M (2021) Vision-based approaches towards person identification using gait. Comput. Sci. Rev. 42, 49. [Google Scholar] [CrossRef]

Kottner, S.; Ebert, L.C.; Ampanozi, G.; Braun, M.; Thali, M.J.; Gascho, D (2017) VirtoScan A mobile, low-cost photogrammetry setup for fast post-mortem 3D full-body documentations in x-ray computed tomography and autopsy suites. Forensic Sci. Med. Pathol. p34–43. [Google Scholar] [CrossRef]

Kottner, S.; Schaerli, S.; Fürst, M.; Ptacek, W.; Thali, M.; Gascho, D (2019) VirtoScan-on-Rails—An automated 3D imaging system for fast post-mortem whole-body surface documentation at autopsy tables. Forensic Sci. Med. Pathol. p198–212. [Google Scholar] [CrossRef]

Kottner, S.; Thali, M.J.; Gascho, D (2023) Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging p 32. [Google Scholar] [CrossRef]

Kottner, S.; Flach, P.M.; Gascho, D.; Ampanozi, G.; Thali, M.; Ebert, L.C. (2020) Communicating 3D data-interactive 3D PDF documents for expert reports and scientific publications in the field of forensic medicine. Int. J. Leg. Med. p175–183. [Google Scholar] [CrossRef]

Leipner, A.; Baumeister, R.; Thali, M.J.; Braun, M.; Dobler, E.; Ebert, L.C (2016) Multi-camera system for 3D forensic documentation. Forensic Sci. Int. p123–128. [Google Scholar] [CrossRef]

Lindgren, N.; Henningsen, M.J.; Jacobsen, C.; Villa, C.; Kleiven, S.; (2023) Prediction of Skull Fractures in Blunt Force Head Traumas using Finite Element Head Models. Biomech. Model. Mechanobiol. preprint (Version 1). [Google Scholar] [CrossRef]

Li, X.; Sandler, H.; Kleiven, S (2019) Infant skull fractures: Accident or abuse?: Evidences from biomechanical analysis using finite element head models. Forensic Sci. p173–182. [Google Scholar] [CrossRef]

Michienzi, R.; Meier, S.; Ebert, L.C.; Martinez, R.M.; Sieberth, T (2018) Comparison of forensic photo-documentation to a photogrammetric solution using the multi-camera system “Botscan”. Forensic Sci. Int. p46–52. [Google Scholar] [CrossRef] [PubMed]

Maiese, A.; Manetti, A.C.; Ciallella, C.; Fineschi, V (2022) The Introduction of a New Diagnostic Tool in Forensic Pathology: LiDAR Sensor for 3D Autopsy Documentation. Biosensors p132. [Google Scholar] [CrossRef] [PubMed]

Maneli, M.A.; Isafiade, O.E (2022) 3D Forensic Crime Scene Reconstruction Involving Immersive Technology: A Systematic Literature Review. IEEE Access p10 [Google Scholar] [CrossRef]

Mohammad, N.; Ahmad, R.; Kurniawan, A.; Yusof (2022) M.Y.P.M. Applications of contemporary artificial intelligence technology in forensic odontology as primary forensic identifier: A scoping review. Front. Artif. Intell. p5. [Google Scholar] [CrossRef] [PubMed]

Neeter, E., (2018) Exploring Virtual Reality as a Forensic Tool. 1 ed. s.l.:Evidence Technology Magazine.

Norberti, N.; Tonelli, P.; Giaconi, C.; Nardi, C.; Focardi, M.; Nesi, G.; Miele, V.; Colagrande, S (2019) State of the art in post-mortem computed tomography: A review of current literature. Virchows Arch. p 139–150. [Google Scholar] [CrossRef]

Olver, A.M.; Guryn, H.; Liscio, E (2021) The effects of camera resolution and distance on suspect height analysis using PhotoModeler. Forensic Sci. Int. p318 [Google Scholar] [CrossRef] [PubMed]

O’Sullivan, S.; Holzinger, A.; Wichmann, D.; Saldiva, P.H.N.; Sajid, M.I.; Zatloukal, K (2018) Virtual autopsy: Machine Learning and AI provide new opportunities for investigating minimal tumor burden and therapy resistance by cancer patients. Autops. Case Rep. p150. [Google Scholar] [CrossRef] [PubMed]

Pesce, M.; Galantucci, L.M.; Lavecchia, F(2016) A 12-camera body scanning system based on close-range photogrammetry for precise applications. Virtual Phys. Prototyp p49–56. [Google Scholar] [CrossRef]

Pool, R., (2019) Virtual and Augmented Reality Tech Joins the Fight against Crime. [Online] Available at: https://spie.org/news/spieprofessional-magazine-archive/2019-january/ar/vr-tech-joins-thefight-against-crime?SSO=1 [Accessed 04 April 2020].

Ramme, A.J.; Vira, S.; Hotca, A.; Miller, R.; Welbeck, A.; Honig, S.; Egol, K.A.; Rajapakse, C.S.; Chang, G. (2019) A Novel MRI Tool for Evaluating Cortical Bone Thickness of the Proximal Femur. Bull. Hosp. Jt. Dis. p115–121. [Google Scholar]

Raneri, D (2018) Enhancing forensic investigation through the use of modern three-dimensional (3D) imaging technologies for crime scene reconstruction AU—Raneri, Domenic. Aust. J. Forensic Sci. p697–707. [Google Scholar] [CrossRef]

Saiti, E.; Theoharis, T (2022) Multimodal registration across 3D point clouds and CT-volumes. Comput. Graph. p259–266. [Google Scholar] [CrossRef]

Schwendener, N.; Jackowski, C.; Schuster, F.; Persson, A.; Warntjes, M.J.; Zech, W(2017) Temperature-corrected post-mortem 1.5 T MRI quantification of non-pathologic upper abdominal organs. Int. J. Leg. Med. p 1369–1376. [Google Scholar] [CrossRef] [PubMed]

Shelmerdine, S.C.; Hutchinson, J.C.; Arthurs, O.J.; Sebire, N.J (2020) Latest developments in post-mortem foetal imaging. Prenat. Diagn. p28–37. [Google Scholar] [CrossRef]

Sieberth, T.; Seckiner, D.; Dobay, A.; Dobler, E.; Golomingi, R.; Ebert, L (2021) The forensic holodeck—Recommendations after 8 years of experience for additional equipment to document VR applications. Forensic Sci. Int. p329 [Google Scholar] [CrossRef]

Slot, L.; Larsen, P.K.; Lynnerup, N. (2014) Photogrammetric Documentation of Regions of Interest at Autopsy—A Pilot Study. J. Forensic Sci. p226–230. [Google Scholar] [CrossRef]

Suncksen, M., Hamester, F. & C.Ebert, L. (2019) Preparing and Guiding Forensic Crime Scene Inspections in Virtual Reality. Germany, ACM, pp. 755-758.

Thakkar, N.; Pavlakos, G.; Farid, H (2022) The Reliability of Forensic Body-Shape Identification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, LA, USA pp 44–52. [Google Scholar]

The Franklin Institute (2020) HISTORY OF VIRTUAL REALITY. [Online] Available at: https://www.fi.edu/virtual-reality/history-ofvirtual-reality [Accessed 29 March 2020].

Toy, S.; Secgin, Y.; Oner, Z.; Turan, M.K.; Oner, S.; Senol, D (2022) A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium. Sci. Rep. p12 [Google Scholar] [CrossRef]

T. P. Kersten, F.Tschirschwitz & S.Deggim, (2017) DEVELOPMENT OF A VIRTUAL MUSEUM INCLUDING A 4D PRESENTATION OF BUILDING HISTORY IN VIRTUAL REALITY. Virtual Reality, XLII (2), pp. 361- 367.

Vidoli, G.; Devlin, J.; Watson, J.; Kenyhercz, M.; Keller, J (2020) Implications of Three-Dimensional Laser Scanned Images for the Criminal Justice System; National Institute of Justice: Washington, DC, USA [Google Scholar]

Villa, C.; Flies, M.J.; Jacobsen, C (2018) Forensic 3D documentation of bodies: Simple and fast procedure for combining CT scanning with external photogrammetry data. J. Forensic Radiol. Imaging p12. [Google Scholar] [CrossRef]

Villa, C (2017) Forensic 3D documentation of skin injuries. Int. J. Leg. Med p751–759. [Google Scholar] [CrossRef]

Villa, C.; Hansen, N.F.; Hansen, K.M.; Hougen, H.P.; Jacobsen, C (2018) 3D reconstructions of a controlled bus bombing. J. Forensic Radiol. Imaging p11–20. [Google Scholar] [CrossRef]

Villa, C.; Jacobsen, C. (2019) The Application of Photogrammetry for Forensic 3D Recording of Crime Scenes, Evidence and People. In Essentials of Autopsy Practice; Rutty, G., Ed.; Springer: Cham, Switzerland, [Google Scholar]

Villa, C.; Lynnerup, N.; Boel, L.W.T.; Boldsen, J.L.; Weise, S.; Bjarnø, C.; Larsen, L.K.; Jørkov, M.L (2022) Forensic Anthropology and Archaeology in Denmark. Scand. J. Forensic Sci. p3–9. [Google Scholar] [CrossRef]

Villa, C.; Olsen, K.B.; Hansen, S.H ( 2017) Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions: Living and dead subjects. Forensic Sci. Int.278, e27–e33. [Google Scholar] [CrossRef]

Woodford, C. (2019 ) Virtual Reality. [Online] Available at:

https://www.explainthatstuff.com/virtualreality.html [Accessed 05 April 2020].

Zhang, M. Forensic (2022) imaging: A powerful tool in modern forensic investigation. Forensic Sci. Res p385–392. [Google Scholar] [CrossRef] [PubMed]

Downloads

Published

24.11.2023

How to Cite

Elhaw, A. E. ., & Alshehhi, D. J. . (2023). Using Virtual Reality in (Investigating-Simulating-Reconstructing) the Crime Scene. International Journal of Intelligent Systems and Applications in Engineering, 12(5s), 530–555. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3962

Issue

Section

Research Article