Improved Alzheimer's Disease Classification Using Innovative Multimodal Feature Selection and Fusion Technique

Authors

  • S. Shobha Research Scholar, Department of Electronics and Communication Engineering, Sapthagiri College of Engineering Bengaluru,
  • B. R. Karthikeyan Associate Professor, Department of Electronics and Communication Engineering, M S Ramaiah University of Applied Sciences, Bengaluru, India.

Keywords:

Alzheimer Disease (AD), Mild Cognitive Impairment (MCI), Normal Controls (NC), Feature Selection

Abstract

This paper aims to enhance the accuracy of Alzheimer's Disease (AD) versus Mild Cognitive Impairment (MCI) versus Normal Controls (NC) classification through the implementation of feature reduction techniques and the fusion of multimodal features. Specifically, gray matter within specified regions of interest (ROI) in the brain is extracted from both MRI and FDG-PET images. The LASSO feature selection technique is employed to identify relevant features crucial for distinguishing AD from MCI and NC. The reduction in features results in a 92.27% accuracy, reflecting an 11% improvement compared to classification without feature selection in AD versus MCI. The classification of AD versus MCI and MCI versus NC proves challenging due to the high correlations among features. The analysis reveals that a maximum classification accuracy of 92.27% is achieved for AD versus MCI through the multi-modal combination of features using a linear Support Vector Machine (SVM) algorithm. Additionally, a 99% accuracy is attained for MCI versus NC using the linear SVM algorithm. The fusion of features across all modalities yields a 94.9% accuracy for AD versus MCI versus NC. This analysis underscores that the fusion of multimodal features consistently improves classification accuracy compared to relying on any single modality. The study utilizes the ADNI-1 database, and the corresponding subject IDs are detailed in Table 10.

Downloads

Download data is not yet available.

References

2021 Alzheimer’s disease facts and figures. (2021). Alzheimer’s and Dementia, 17(3), 327–406. https://doi.org/10.1002/alz.12328

Alzheimer, E., Mcevoy, L. K., Fennema-notestine, C., Jennings, R. G., Brewer, J. B., Hoh, C. K., & Dale, A. M. (2010). Relative Capability of MR Imaging and FDG PET to Depict Changes Associated with Purpose: Methods: Results. Radiology, 256(3), 932–942. https://doi.org/10.1148/radiol.10091402/-/DC1

Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27(8), 1163–1174. https://doi.org/10.1016/j.mri.2009.01.006

Blennow, K., & Hampel, H. (2003). Review CSF markers for incipient Alzheimer’ s disease CSF markers for incipient AD. 2(October), 605–613.

Buerger, K., Ewers, M., Pirttilä, T., Zinkowski, R., Alafuzoff, I., Teipel, S. J., DeBernardis, J., Kerkman, D., McCulloch, C., Soininen, H., & Hampel, H. (2006). CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain, 129(11), 3035–3041. https://doi.org/10.1093/brain/awl269

Cho, Y., Seong, J. K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59(3), 2217–2230. https://doi.org/10.1016/j.neuroimage.2011.09.085

Coley, N., Gardette, V., Cantet, C., Gillette-Guyonnet, S., Nourhashemi, F., Vellas, B., & Andrieu, S. (2011). How Should We Deal with Missing Data in Clinical Trials Involving Alzheimer’s Disease Patients? Current Alzheimer Research, 999(999), 1–12. https://doi.org/10.2174/1567211212443482050

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M. O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781. https://doi.org/10.1016/j.neuroimage.2010.06.013

De Magalhães Oliveira, P. P., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J. R., & Amaro, E. (2010). Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(4), 1263–1272. https://doi.org/10.3233/JAD-2010-1322

Gray, K. R., Wolz, R., Heckemann, R. A., Aljabar, P., Hammers, A., & Rueckert, D. (2012). Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage, 60(1), 221–229. https://doi.org/10.1016/j.neuroimage.2011.12.071

Grundke-Iqbal, I., Iqbal, K., & Tung, Y. C. (1986). Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83(13), 44913–44917. https://doi.org/10.1097/00002093-198701030-00020

Gupta, Y., Lama, R. K., & Kwon, G. R. (2019). Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Frontiers in Computational Neuroscience, 13(October), 1–18. https://doi.org/10.3389/fncom.2019.00072

Hansson, O., Zetterberg, H., Buchhave, P., Andreasson, U., Londos, E., Minthon, L., & Blennow, K. (2007). Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23(5), 316–320. https://doi.org/10.1159/000100926

Hao, X., Bao, Y., Guo, Y., Yu, M., Zhang, D., Risacher, S. L., Saykin, A. J., Yao, X., & Shen, L. (2020). Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease. Medical Image Analysis, 60, 101625. https://doi.org/10.1016/j.media.2019.101625

Heywood, W. E., Hallqvist, J., Heslegrave, A. J., Zetterberg, H., Fenoglio, C., Scarpini, E., Rohrer, J. D., Galimberti, D., & Mills, K. (2018). CSF pro-orexin and amyloid-β38 expression in Alzheimer’s disease and frontotemporal dementia. Neurobiology of Aging, 72, 171–176. https://doi.org/10.1016/j.neurobiolaging.2018.08.019

Hinrichs, C., Singh, V., Xu, G., & Johnson, S. C. (2011). Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage, 55(2), 574–589. https://doi.org/10.1016/j.neuroimage.2010.10.081

Hu, K., Wang, Y., Chen, K., Hou, L., & Zhang, X. (2015). Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis. Neurocomputing, 175(PartA), 132–145. https://doi.org/10.1016/j.neucom.2015.10.043

Jacquier, M., Arango, D., Villareal, E., Torres, O., Serrano, M. L., Cruts, M., Montañes, P., Cano, C., Rodriguez, M. N., Serneels, S., & Van Broeckhoven, C. (2001). APOE ε4 and Alzheimer’s disease: Positive association in a Colombian clinical series and review of the Latin-American studies. Arquivos de Neuro-Psiquiatria, 59(1), 11–17. https://doi.org/10.1590/s0004-282x2001000100004

Lei, B., Chen, S., Ni, D., & Wang, T. (2016). Discriminative learning for Alzheimer’s disease diagnosis via canonical correlation analysis and multimodal fusion. Frontiers in Aging Neuroscience, 8(MAY), 1–17. https://doi.org/10.3389/fnagi.2016.00077

Lei, B., Yang, P., Wang, T., Chen, S., & Ni, D. (2017). Relational-Regularized Discriminative Sparse Learning for Alzheimer’s Disease Diagnosis. IEEE Transactions on Cybernetics, 47(4), 1102–1113. https://doi.org/10.1109/TCYB.2016.2644718

Li, Y., Meng, F., & Shi, J. (2019). Learning using privileged information improves neuroimaging-based CAD of Alzheimer’s disease: a comparative study. Medical and Biological Engineering and Computing, 57(7), 1605–1616. https://doi.org/10.1007/s11517-019-01974-3

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239. https://doi.org/10.1016/S1053-8119(03)00169-1

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005

Riederer, I., Bohn, K. P., Preibisch, C., Wiedemann, E., Zimmer, C., Alexopoulos, P., & Förster, S. (2018). Alzheimer disease and mild cognitive impairment: Integrated pulsed arterial spin-labeling MRI and18F-FDG PET. Radiology, 288(1), 198–206. https://doi.org/10.1148/radiol.2018170575

Shoji, M., Matsubara, E., Kanai, M., Watanabe, M., Nakamura, T., Tomidokoro, Y., Shizuka, M., Katsumi, W., Igeta, Y., Ikeda, Y., Mizushima, K., Amari, M., Ishiguro, K., Kawarabayashi, T., Harigaya, Y., Okamoto, K., & Hirai, S. (1998). Combination assay of CSF Tau , A beta 1-40 and A beta 1-42 (43) as a biochemical marker of Alzheimer ’ s disease. J Neurol Sci., 158, 134–140.

Sørensen, L., Igel, C., Pai, A., Balas, I., Anker, C., Lillholm, M., & Nielsen, M. (2017). Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. NeuroImage: Clinical, 13, 470–482. https://doi.org/10.1016/j.nicl.2016.11.025

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 280–292. https://doi.org/10.1016/j.jalz.2011.03.003

S. S and B. R. Karthikeyan, "Feature Selection on MRI Data for Improved Classification of Alzheimer Disease," 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021, pp. 1-6, doi: 10.1109/CONECCT52877.2021.9622551.

Suk, H. Il, Lee, S. W., & Shen, D. (2014). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582. https://doi.org/10.1016/j.neuroimage.2014.06.077

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Tong, T., Gray, K., Gao, Q., Chen, L., & Rueckert, D. (2017). Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recognition, 63(May 2016), 171–181. https://doi.org/10.1016/j.patcog.2016.10.009

Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2011). Apolipoprotein E in Alzheimer’s disease and other neurological disorders. The Lancet Neurology, 10(3), 241–252. https://doi.org/10.1016/S1474-4422(10)70325-2

Wang, Z., Zhu, X., Adeli, E., Zhu, Y., Nie, F., Munsell, B., & Wu, G. (2017). Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Medical Image Analysis, 39, 218–230. https://doi.org/10.1016/j.media.2017.05.003

Welge, V., Fiege, O., Lewczuk, P., Mollenhauer, B., Esselmann, H., Klafki, H. W., Wolf, S., Trenkwalder, C., Otto, M., Kornhuber, J., Wiltfang, J., & Bibl, M. (2009). Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer’s disease. Journal of Neural Transmission, 116(2), 203–212. https://doi.org/10.1007/s00702-008-0177-6

Westman, E., Aguilar, C., Muehlboeck, J. S., & Simmons, A. (2013). Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer’s disease and mild cognitive impairment. Brain Topography, 26(1), 9–23. https://doi.org/10.1007/s10548-012-0246-x

Westman, E., Muehlboeck, J. S., & Simmons, A. (2012). Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage, 62(1), 229–238. https://doi.org/10.1016/j.neuroimage.2012.04.056

Wiltfang, J., Esselmann, H., Bibl, M., Hüll, M., Hampel, H., Kessler, H., Frölich, L., Schröder, J., Peters, O., Jessen, F., Luckhaus, C., Perneczky, R., Jahn, H., Fiszer, M., Maler, J. M., Zimmermann, R., Bruckmoser, R., Kornhuber, J., & Lewczuk, P. (2007). Amyloid β peptide ratio 42/40 but not Aβ42 correlates with phospho-Tau in patients with low- and high-CSF Aβ40 load. Journal of Neurochemistry, 101(4), 1053–1059. https://doi.org/10.1111/j.1471-4159.2006.04404.x

Zhang, D., & Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907. https://doi.org/10.1016/j.neuroimage.2011.09.069

Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867. https://doi.org/10.1016/j.neuroimage.2011.01.008

Downloads

Published

13.12.2023

How to Cite

Shobha, S. ., & Karthikeyan, B. R. . (2023). Improved Alzheimer’s Disease Classification Using Innovative Multimodal Feature Selection and Fusion Technique . International Journal of Intelligent Systems and Applications in Engineering, 12(8s), 383–394. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4129

Issue

Section

Research Article