Digital Mammography Data Transformation Model to Improve the Accuracy of Benign and Malignant Detection in Breast Cancer

Authors

  • Anak Agung Ngurah Gunawan Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia.
  • I. Wayan Supardi Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia.
  • Nyoman Wendri Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia.
  • Anak Agung Ngurah Frady Cakra Negara Department of Informatics, Faculty of Mathematics and Natural Sciences, Udayana University, Bali Indonesia.
  • Anak Agung Ngurah Bagaskara Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia.
  • Putu Patriawan Radiology Department, Prof. Ngurah Hospital, Bali, Indonesia
  • I. Bagus Gede Dharmawan Radiology Department, Prima Medika Hospital, Bali, Indonesia

Keywords:

Benign, Breast cancer, KNN, Malignant, Mammography, Naïve Baye

Abstract

Digital mammography is a tool for early detection of breast cancer, but its sensitivity is low in dense breasts, and the false negatives are high. Therefore, this research aims to create a digital mammography data transformation model to improve the accuracy of benign and malignant detection in breast and compare it with other advanced methods. This research took data from Dokter Sutomo Hospital Surabaya and Sanglah Hospital Denpasar in the form of mammogram images taken from the hospital database with complete pathology results from 2010 to 2023. A total of 442 mammograms consisting of 114 benign and 328 malignant, 50% taken for training as many as 57 benign and 164 malignant, and 50% for trials as many as 57 benign and 164 malignant. This research used three methods: K-Nearest Neighbor (KNN), Naïve Bayes, and Support Vector Machine (SVM). Then, this research compared the three methods. Inclusion criteria: complete pathology results, no radiotherapy, and chemotherapy. The local hospital ethics committee approved this research. All patients were informed and obtained their verbal consent.The proposed KNN method with binary transformation had the best value with a sensitivity of 96.66% and False Negative 0%, compared to the Naïve Bayes method, which had a sensitivity value of 94.44% and False Negative 4%. In comparison, the SVM method had a sensitivity value of 84.85% and False Negative 4.16 %. Our meta-analysis showed that transformed physical parameters could increase sensitivity and decrease False Negatives. However, these findings must be proven on larger and multiple datasets with different mammography scanners

Downloads

Download data is not yet available.

References

S. Di Maria, S. Vedantham, and P. Vaz, ‘X-ray dosimetry in breast cancer screening: 2D and 3D mammography’, Eur. J. Radiol., vol. 151, Jun. 2022, doi: 10.1016/j.ejrad.2022.110278.

E. Mirbagheri, M. Shafiee, M. Shanbezadeh, and H. Kazemi-Arpanahi, ‘Developing the required data set for the integration of breast cancer registry systems in Iran’, Informatics Med. Unlocked, vol. 32, Jan. 2022, doi: 10.1016/j.imu.2022.101011.

M. R. Mogal, M. R. Mahmod, S. A. Sompa, A. Junayed, M. Z. Abedin, and M. A. Sikder, ‘Association between ankyrin 2 gene and breast cancer progression: A preliminary computational assessment using the database approach’, Informatics Med. Unlocked, vol. 25, Jan. 2021, doi: 10.1016/j.imu.2021.100663.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, 2018, doi: 10.3322/caac.21492.

J. J. Gommers et al., ‘Breast magnetic resonance imaging as a problem solving tool in women recalled at biennial screening mammography: A population-based study in the Netherlands’, Breast, vol. 60, pp. 279–286, Dec. 2021, doi: 10.1016/j.breast.2021.11.014.

A. Jemal, F. Bray, and J. Ferlay, ‘Global Cancer Statistics: 2011’, CA Cancer J Clin, vol. 49, no. 2, pp. 1,33-64, 1999, doi: 10.3322/caac.20107.Available.

W. Ma, J. Mao, T. Wang, Y. Huang, and Z. H. Zhao, ‘Distinguishing between benign and malignant breast lesions using diffusion weighted imaging and intravoxel incoherent motion: A systematic review and meta-analysis’, Eur. J. Radiol., vol. 141, Aug. 2021, doi: 10.1016/j.ejrad.2021.109809.

A. D. Omisore et al., ‘Practice, Perceptions, and Prospects of Mammography Screening in Nigeria: Insights From a National Survey of Female Health Workers’, Clin. Breast Cancer, vol. 22, no. 5, pp. 462–472, 2022, doi: 10.1016/j.clbc.2022.02.009.

M. M. Rahman, M. S. I. Khan, and H. M. H. Babu, ‘BreastMultiNet: A multi-scale feature fusion method using deep neural network to detect breast cancer’, Array, vol. 16, Dec. 2022, doi: 10.1016/j.array.2022.100256.

S. I. Khan, A. Shahrior, R. Karim, M. Hasan, and A. Rahman, ‘MultiNet: A deep neural network approach for detecting breast cancer through multi-scale feature fusion’, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6217–6228, Sep. 2022, doi: 10.1016/j.jksuci.2021.08.004.

J. R. C. Lameijer et al., ‘Trends in delayed breast cancer diagnosis after recall at screening mammography’, Eur. J. Radiol., vol. 136, Mar. 2021, doi: 10.1016/j.ejrad.2020.109517.

E. M. F. El Houby and N. I. R. Yassin, ‘Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks’, Biomed. Signal Process. Control, vol. 70, Sep. 2021, doi: 10.1016/j.bspc.2021.102954.

A. D. Nelson and S. Krishna, ‘An effective approach for the nuclei segmentation from breast histopathological images using star-convex polygon’, Procedia Comput. Sci., vol. 218, pp. 1778–1790, 2023, doi: 10.1016/j.procs.2023.01.156.

Y. Amethiya, P. Pipariya, S. Patel, and M. Shah, ‘Comparative analysis of breast cancer detection using machine learning and biosensors’, Intelligent Medicine, vol. 2, no. 2. Elsevier B.V., pp. 69–81, May 01, 2022. doi: 10.1016/j.imed.2021.08.004.

Y. J. Yeow, C. C. Yu, Y. C. Cheung, and S. C. Chen, ‘A cohort study of mammography-guided vacuum-assisted breast biopsy in patients with compressed thin breasts (≦ 3 cm)’, Asian J. Surg., 2023, doi: 10.1016/j.asjsur.2023.04.074.

S. Forte et al., ‘Can grating interferometry-based mammography discriminate benign from malignant microcalcifications in fresh biopsy samples?’, Eur. J. Radiol., vol. 129, Aug. 2020, doi: 10.1016/j.ejrad.2020.109077.

R. M. Heaney, L. Sweeney, F. Flanagan, A. O’Brien, and C. Smith, ‘Ipsilateral microcalcifications after breast-conserving surgery: is it possible to differentiate benign from malignant calcifications?’, Clin. Radiol., vol. 77, no. 3, pp. 216–223, Mar. 2022, doi: 10.1016/j.crad.2021.12.005.

Q. Lin et al., ‘Artificial intelligence-based diagnosis of breast cancer by mammography microcalcification’, Fundam. Res., Jun. 2023, doi: 10.1016/j.fmre.2023.04.018.

M. L. Huang and T. Y. Lin, ‘Considering breast density for the classification of benign and malignant mammograms’, Biomed. Signal Process. Control, vol. 67, May 2021, doi: 10.1016/j.bspc.2021.102564.

S. W. Duffy et al., ‘The impact of organized mammography service screening on breast carcinoma mortality in seven Swedish Counties: A collaborative evaluation’, Cancer, vol. 95, no. 3, pp. 458–469, 2002, doi: 10.1002/cncr.10765.

L. Nyström, I. Andersson, N. Bjurstam, J. Frisell, B. Nordenskjöld, and L. E. Rutqvist, ‘Long-term effects of mammography screening: Updated overview of the Swedish randomised trials’, Lancet, vol. 359, no. 9310, pp. 909–919, 2002, doi: 10.1016/S0140-6736(02)08020-0.

J. H. Yoon, K. Han, H. J. Suh, J. H. Youk, S. E. Lee, and E. K. Kim, ‘Artificial intelligence-based computer-assisted detection/diagnosis (AI-CAD) for screening mammography: Outcomes of AI-CAD in the mammographic interpretation workflow’, Eur. J. Radiol. Open, vol. 11, Dec. 2023, doi: 10.1016/j.ejro.2023.100509.

Y. Eroğlu, M. Yildirim, and A. Çinar, ‘Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR’, Comput. Biol. Med., vol. 133, Jun. 2021, doi: 10.1016/j.compbiomed.2021.104407.

R. Verma, G. K. Jain, and A. Chougule, ‘Evaluation and analysis of entrance surface air kerma of the thyroid gland during breast cancer screening mammography’, Radiat. Med. Prot., vol. 2, no. 2, pp. 67–71, Jun. 2021, doi: 10.1016/j.radmp.2021.03.001.

J. Louro et al., ‘Differences in breast cancer risk after benign breast disease by type of screening diagnosis’, Breast, vol. 54, pp. 343–348, Dec. 2020, doi: 10.1016/j.breast.2020.09.005.

S. M. Oshima, S. D. Tait, L. Fish, R. A. Greenup, and L. J. Grimm, ‘Primary care provider perspectives on screening mammography in older women: A qualitative study’, Prev. Med. Reports, vol. 22, Jun. 2021, doi: 10.1016/j.pmedr.2021.101380.

I. Sechopoulos, J. Teuwen, and R. Mann, ‘Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art’, Seminars in Cancer Biology, vol. 72. Academic Press, pp. 214–225, Jul. 01, 2021. doi: 10.1016/j.semcancer.2020.06.002.

Z. Li et al., ‘Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors’, Clin. Breast Cancer, vol. 18, no. 4, pp. e621–e627, Aug. 2018, doi: 10.1016/j.clbc.2017.11.004.

J. L. Khatcheressian et al., ‘Breast cancer follow-up and management after primary treatment: American society of clinical oncology clinical practice guideline update’, J. Clin. Oncol., vol. 31, no. 7, pp. 961–965, 2013, doi: 10.1200/JCO.2012.45.9859.

W. Taher, J. Benson, and S. Leinster, ‘The effectiveness of mammography surveillance after treatment of primary breast cancer: A single centre retrospective cohort study’, Ann. Med. Surg., vol. 65, May 2021, doi: 10.1016/j.amsu.2021.102272.

B. L. Secretan, D. Ph, C. Scoccianti, D. Ph, D. Loomis, and D. Ph, ‘Spe ci a l R e p or t Breast-Cancer Screening — Viewpoint of the IARC Working Group’, pp. 2353–2358, 2015.

J. Wang et al., ‘Cost-effectiveness of abbreviated-protocol MRI screening for women with mammographically dense breasts in a national breast cancer screening program’, Breast, vol. 61, pp. 58–65, Feb. 2022, doi: 10.1016/j.breast.2021.12.004.

F. Rahman et al., ‘A multi-omics approach to reveal the key evidence of GDF10 as a novel therapeutic biomarker for breast cancer’, Informatics Med. Unlocked, vol. 21, Jan. 2020, doi: 10.1016/j.imu.2020.100463.

C. Mattiuzzi and G. Lippi, ‘Current cancer epidemiology’, J. Epidemiol. Glob. Health, vol. 9, no. 4, pp. 217–222, 2019, doi: 10.2991/jegh.k.191008.001.

T. Sterlingova, E. Nylander, L. Almqvist, and B. Møller Christensen, ‘Factors affecting women’s participation in mammography screening in Nordic countries: A systematic review’, Radiography, vol. 29, no. 5. W.B. Saunders Ltd, pp. 878–885, Aug. 01, 2023. doi: 10.1016/j.radi.2023.06.010.

T. Zheng et al., ‘Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study’, 2023. [Online]. Available: www.itksnap.org

R. L. Siegel, K. D. Miller, and A. Jemal, ‘Cancer statistics, 2020’, CA. Cancer J. Clin., vol. 70, no. 1, 2020, doi: 10.3322/caac.21590.

K. Loizidou, R. Elia, and C. Pitris, ‘Computer-aided breast cancer detection and classification in mammography: A comprehensive review’, Computers in Biology and Medicine, vol. 153. Elsevier Ltd, Feb. 01, 2023. doi: 10.1016/j.compbiomed.2023.106554.

R. W. Woods, L. R. Salkowski, M. Elezaby, E. S. Burnside, R. M. Strigel, and A. M. Fowler, ‘Image-based screening for men at high risk for breast cancer: Benefits and drawbacks’, Clin. Imaging, vol. 60, no. 1, pp. 84–89, 2020, doi: 10.1016/j.clinimag.2019.11.005.

M. Le Boulc’h et al., ‘Comparison of breast density assessment between human eye and automated software on digital and synthetic mammography: Impact on breast cancer risk’, Diagn. Interv. Imaging, vol. 101, no. 12, pp. 811–819, Dec. 2020, doi: 10.1016/j.diii.2020.07.004.

I. Saarenmaa et al., ‘The effect of age and density of the breast on the sensitivity of breast cancer diagnostic by mammography and ultasonography’, Breast Cancer Res. Treat., vol. 67, no. 2, pp. 117–123, 2001, doi: 10.1023/A:1010627527026.

V. Tesic, B. Kolaric, A. Znaor, S. K. Kuna, and B. Brkljacic, ‘Mammographic density and estimation of breast cancer risk in intermediate risk population’, Breast J., vol. 19, no. 1, pp. 71–78, 2013, doi: 10.1111/tbj.12051.

B. Malik, E. Iuanow, and J. Klock, ‘An Exploratory Multi-reader, Multi-case Study Comparing Transmission Ultrasound to Mammography on Recall Rates and Detection Rates for Breast Cancer Lesions’, Acad. Radiol., vol. 29, pp. S10–S18, Jan. 2022, doi: 10.1016/j.acra.2020.11.011.

V. P. Jackson, R. E. Hendrick, S. A. Feig, and D. B. Kopans, ‘Imaging of the radiographically dense breast’, Radiology, vol. 188, no. 2, pp. 297–301, 1993, doi: 10.1148/radiology.188.2.8327668.

C. H. Van Gils, J. D. M. Otten, A. L. M. Verbeek, J. H. C. L. Hendriks, and R. Holland, ‘Effect of mammographic breast density on breast cancer screening performance: A study in Nijmegen, the Netherlands’, J. Epidemiol. Community Health, vol. 52, no. 4, pp. 267–271, 1998, doi: 10.1136/jech.52.4.267.

E. D. Pisano et al., ‘Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST’, Radiology, vol. 246, no. 2, pp. 376–383, 2008, doi: 10.1148/radiol.2461070200.

H. D. Nelson, E. S. O’Meara, K. Kerlikowske, S. Balch, and D. Miglioretti, ‘Factors associated with rates of false-positive and false-negative results from digital mammography screening: An analysis of registry data’, Ann. Intern. Med., vol. 164, no. 4, pp. 226–235, 2016, doi: 10.7326/M15-0971.

S. M. Albeshan, S. Z. Hossain, M. G. Mackey, J. K. Peat, F. M. Al Tahan, and P. C. Brennan, ‘Preliminary investigation of mammographic density among women in Riyadh: association with breast cancer risk factors and implications for screening practices’, Clin. Imaging, vol. 54, no. January, pp. 138–147, 2019, doi: 10.1016/j.clinimag.2019.01.002.

M. E. M. Khamis, A. M. Alaa El-deen, and A. A. Azim Ismail, ‘The diagnostic value of sonoelastographic strain ratio in discriminating malignant from benign solid breast masses’, Egypt. J. Radiol. Nucl. Med., vol. 48, no. 4, pp. 1149–1157, Dec. 2017, doi: 10.1016/j.ejrnm.2017.05.005.

[50] D. Ma et al., ‘Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions’, Magn. Reson. Imaging, vol. 36, pp. 175–179, Feb. 2017, doi: 10.1016/j.mri.2016.10.005.

R. Fusco et al., ‘Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination’, Magn. Reson. Imaging, vol. 75, pp. 51–59, Jan. 2021, doi: 10.1016/j.mri.2020.10.008.

R. L. Siegel, K. D. Miller, and A. Jemal, ‘Cancer statistics, 2016’, CA. Cancer J. Clin., vol. 66, no. 1, pp. 7–30, 2016, doi: 10.3322/caac.21332.

A. Agung, N. Gunawan, I. Suhariningsih, K. S. P. Triyono, and B. Widodo, ‘Determination of Physical Parameter Model for the Photo Film Mammographic X-Ray Results on the Breast Cancer Histology Classification’, 2012.

A. A. N. Gunawan, S. Poniman, and I. W. Supardi, ‘Classification of breast cancer grades using physical parameters and K-nearest neighbor method’, Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 2, pp. 637–644, Apr. 2019, doi: 10.12928/TELKOMNIKA.V17I2.9797.

F. M. Awad, ‘Role of supersonic shear wave imaging quantitative elastography (SSI) in differentiating benign and malignant solid breast masses’, Egypt. J. Radiol. Nucl. Med., vol. 44, no. 3, pp. 681–685, Sep. 2013, doi: 10.1016/j.ejrnm.2013.04.001.

T. A. Assegie, ‘An optimized K-Nearest neighbor based breast cancer detection’, J. Robot. Control, vol. 2, no. 3, pp. 115–118, May 2021, doi: 10.18196/jrc.2363.

D. S. Grewal et al., ‘The most widely used is mammography, which has false- negative results in 10e15% cases.’, Med. J. Armed Forces India, no. xxxx, pp. 1–7, 2022, doi: 10.1016/j.mjafi.2022.01.015.

R. A. Abd El-Aleem, E. Abo El-Hamd, H. A. Yousef, M. E. M. Radwan, and R. A. A. Mohammed, ‘The added value of qualitative and quantitative diffusion-weighted magnetic resonance imaging (DW-MRI) in differentiating benign from malignant breast lesions’, Egypt. J. Radiol. Nucl. Med., vol. 49, no. 1, pp. 272–280, Mar. 2018, doi: 10.1016/j.ejrnm.2017.10.015.

Y. G. S. Ebrahim, M. R. Louis, and E. A. Ali, ‘Multi-parametric dynamic contrast enhanced MRI, diffusion-weighted MRI and proton-MRS in differentiation of benign and malignant breast lesions: Imaging interpretation and radiology-pathology correlation’, Egypt. J. Radiol. Nucl. Med., vol. 49, no. 4, pp. 1175–1181, Dec. 2018, doi: 10.1016/j.ejrnm.2018.07.018.

R. D. Mus et al., ‘Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions’, Eur. J. Radiol., vol. 89, pp. 90–96, Apr. 2017, doi: 10.1016/j.ejrad.2017.01.020.

J. Li et al., ‘Can different regions of interest influence the diagnosis of benign and malignant breast lesions using quantitative parameters of contrast-enhanced sonography?’, Eur. J. Radiol., vol. 108, pp. 1–6, Nov. 2018, doi: 10.1016/j.ejrad.2018.09.005.

W. Liu, C. Wei, J. Bai, X. Gao, and L. Zhou, ‘Histogram analysis of diffusion kurtosis imaging in the differentiation of malignant from benign breast lesions’, Eur. J. Radiol., vol. 117, pp. 156–163, Aug. 2019, doi: 10.1016/j.ejrad.2019.06.008.

J. Ma et al., ‘Distinguishing benign and malignant lesions on contrast-enhanced breast cone-beam CT with deep learning neural architecture search’, Eur. J. Radiol., vol. 142, Sep. 2021, doi: 10.1016/j.ejrad.2021.109878.

J. Wang, R. Zhao, and J. Cheng, ‘Diagnostic accuracy of contrast-enhanced ultrasound to differentiate benign and malignant breast lesions: A systematic review and meta-analysis’, Eur. J. Radiol., vol. 149, Apr. 2022, doi: 10.1016/j.ejrad.2022.110219.

S. Kanao, M. Kataoka, M. Iima, D. M. Ikeda, M. Toi, and K. Togashi, ‘Differentiating benign and malignant inflammatory breast lesions: Value of T2 weighted and diffusion weighted MR images’, Magn. Reson. Imaging, vol. 50, pp. 38–44, Jul. 2018, doi: 10.1016/j.mri.2018.03.012.

Q. Zhang et al., ‘Quantitative transport mapping (QTM) for differentiating benign and malignant breast lesion: Comparison with traditional kinetics modeling and semi-quantitative enhancement curve characteristics.’, Magn. Reson. Imaging, vol. 86, pp. 86–93, Feb. 2022, doi: 10.1016/j.mri.2021.10.039.

B. W. Han et al., ‘Noninvasive discrimination of benign and malignant breast lesions using genome-wide nucleosome profiles of plasma cell-free DNA’, Clin. Chim. Acta, vol. 520, pp. 95–100, Sep. 2021, doi: 10.1016/j.cca.2021.06.008.

H. Y. Choi, Y. M. Sohn, and M. Seo, ‘Comparison of 3D and 2D shear-wave elastography for differentiating benign and malignant breast masses: focus on the diagnostic performance’, Clin. Radiol., vol. 72, no. 10, pp. 878–886, Oct. 2017, doi: 10.1016/j.crad.2017.04.009.

M. Wubulihasimu, M. Maimaitusun, X. L. Xu, X. D. Liu, and B. M. Luo, ‘The added value of contrast-enhanced ultrasound to conventional ultrasound in differentiating benign and malignant solid breast lesions: a systematic review and meta-analysis’, Clin. Radiol., vol. 73, no. 11, pp. 936–943, Nov. 2018, doi: 10.1016/j.crad.2018.06.004.

R. K. Wasan et al., ‘Can digital breast tomosynthesis accurately predict whether circumscribed masses are benign or malignant in a screening population?’, Clin. Radiol., vol. 74, no. 4, pp. 327.e1-327.e5, Apr. 2019, doi: 10.1016/j.crad.2018.12.020.

B. Y. Chen et al., ‘Multiple b-value diffusion-weighted imaging in differentiating benign from malignant breast lesions: comparison of conventional mono-, bi- and stretched exponential models’, Clin. Radiol., vol. 75, no. 8, pp. 642.e1-642.e8, Aug. 2020, doi: 10.1016/j.crad.2020.03.039.

Y. Yu et al., ‘Application of a shear-wave elastography prediction model to distinguish between benign and malignant breast lesions and the adjustment of ultrasound Breast Imaging Reporting and Data System classifications’, Clin. Radiol., vol. 77, no. 2, pp. e147–e153, Feb. 2022, doi: 10.1016/j.crad.2021.10.016.

A. Mosapour, F. S. Karami Tehrani, and M. Atri, ‘Expression level of VLDL receptor and VLDL-c levels in the malignant and benign breast tumors: The correlation with miRNA-4465 and miRNA-1297’, Mol. Cell. Probes, vol. 53, Oct. 2020, doi: 10.1016/j.mcp.2020.101624.

W. C. Shia and D. R. Chen, ‘Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine’, Comput. Med. Imaging Graph., vol. 87, Jan. 2021, doi: 10.1016/j.compmedimag.2020.101829.

Y. Davoudi, B. Borhani, M. P. Rad, and N. Matin, ‘The role of doppler sonography in distinguishing malignant from benign breast lesions’, J. Med. Ultrasound, vol. 22, no. 2, pp. 92–95, 2014, doi: 10.1016/j.jmu.2013.12.001.

I. Handayani, ‘IJISCS | 1 COMPARISON OF K-NEAREST NEIGHBOR AND NAÏVE BAYES FOR BREAST CANCER CLASSIFICATION USING PYTHON’.

Downloads

Published

25.12.2023

How to Cite

Ngurah Gunawan, A. A. ., Supardi, I. W. ., Wendri, N. ., Ngurah Frady Cakra Negara, A. A. ., Ngurah Bagaskara, A. A. ., Patriawan, P. ., & Dharmawan, I. B. G. . (2023). Digital Mammography Data Transformation Model to Improve the Accuracy of Benign and Malignant Detection in Breast Cancer. International Journal of Intelligent Systems and Applications in Engineering, 12(1), 647–665. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4162

Issue

Section

Research Article