Extracting Slicer Parameters from STL file in 3D Printing


  • Sonali Patil Department of Computer Engineering, Vishwakarma University, Pune, India
  • Yogesh Deshpande Department of Computer Engineering, Vishwakarma University, Pune, India
  • Dattatraya Parle Nuclear Advanced Manufacturing Research Centre, Sheffield, United Kingdom


G-code, STL, Slicer Parameters, 3D Printing, Parameter Extraction, G-code Parsing, Slicer Software, Geometrical Feature Extraction, Slicing Algorithms, Parameter Optimization


These 3D printing revolutionizes manufacturing by requiring accurate control and optimization of print parameters. Slicer software simplifies 3D modelling for printers by breaking down models into layer-wise instructions, calculates toolpath, generates support structures, aids in infill density, pattern control, and sets print settings. It includes a 3D preview and uses G-code, a 3D printing language, for printer setup. Extracting slicer parameters from G-code is crucial for quality control, documentation, optimization, troubleshooting, and educational purposes. The feature allows users to review settings and parameters during the slicing process, improving quality control, facilitating troubleshooting, identifying improvement areas, reducing print times, and enhancing material efficiency. Analysing slicer parameters in G-code can offer valuable insights into the printing process, enabling fine-tuning of print settings for enhanced quality and efficiency. This research paper reviews the challenges and techniques of extracting slicer parameters like G-code Parsing Algorithms, Regular Expression Matching, Metadata Extraction and Machine Learning Approaches. A novel method is discussed to extract the features by parsing the sliced STL file. The dataset generated can be further used to find Layer Thickness, Layer Height Distribution, Surface Quality, Interlayer Adhesion, Slice Alignment, Defect Detection and Geometric Analysis.


Download data is not yet available.


Mazzei, D., Graziani, G., & Togni, F. (2020). 3D printing in the construction industry: A review. Sustainability, 12(4), 1581.

Kumar, P., Kruth, J. P., & Van Humbeeck, J. (2018). Additive manufacturing: Techniques, developments and future perspectives. In Comprehensive Materials Processing (Vol. 10, pp. 59-95). Elsevier.

Bellini, A., G>çeri, S. I., & G>çeri, S. (2017). Additive Manufacturing Technologies. In Fundamentals of 3D Food Printing and Applications (pp. 13-39). Springer International Publishing.

Tian, J., et al. (2019). "Advancements in Additive Manufacturing Parameters." Journal of Advanced Manufacturing Technology, 45(3), 321-335.

Smith, A., et al. (2017). "G-code Parsing for Efficient 3D Printing." Journal of Additive Manufacturing, 15(2), 123-135.

Jones, R., Patel, S. (2015). "Advancements in G-code Analysis Algorithms." International Journal of Computer-Aided Manufacturing, 32(4), 567-578.

Gupta, S., et al. (2019). "Comparative Study of Slicer Parameter Extraction Techniques." International Journal of Advanced Manufacturing Technology, 46(7-8), 981-995.

Chen, Q., et al. (2021). "Metrics for Evaluating Slicer Parameter Extraction in Medical 3D Printing." Journal of Medical Additive Manufacturing, 14(3), 213-225.

Wang, Y., Smith, B. (2018). "Synthetic Datasets for Evaluating Parameter Extraction Techniques." International Conference on Computer-Aided Design, 245-252.

Brown, L. (2016). "Flexible Parameter Extraction Using Regular Expressions." Journal of Computational Design and Engineering, 3(2), 189-197.

Lopez, R., Smith, B. (2018). "Deep Learning for G-code Analysis." Journal of Manufacturing Science and Engineering, 140(5), 051010.

Wang, Y., Kim, J. (2020). "Automated Metadata Extraction in G-code." IEEE Transactions on Automation Science and Engineering, 17(3), 675-688

Kim, J., et al. (2018). "Comprehensive Evaluation Metrics for Slicer Parameter Extraction Techniques." International Journal of Computer-Aided Manufacturing, 35(6), 891-906.

Li, X., et al. (2020). "Benchmark Dataset for Slicer Parameter Extraction." Journal of Additive Manufacturing Research, 28, 112-125.

Shan, X., Xie, Z., Fang, Z., Zheng, C., Zhang, Y., & Xia, L. (2021). Study on the influence of 3D printing process parameters on surface quality of parts. Rapid Prototyping Journal, 27(8), 1520-1528.

Craff, J. (2018). G-code: The Unwritten Language of 3D Printing. 3D Printing Industry. Retrieved from https://3dprintingindustry.com/news/g-code-the-unwritten-language-of-3d-printing-137016/.

Beyer, C., Heinl, P., & Singer, R. F. (2021). Slicing Software for Additive Manufacturing. In Springer Handbook of Manufacturing Technology (pp. 513-539). Springer.

Chua, C. K., Yeong, W. Y., & Tan, K. H. (2018). 3D Printing: Principles and Applications. World Scientific Publishing.

Anwer, N., Mahmood, H., Khan, A. U., Waqas, M., & Khan, M. K. (2020). 3D Printing Parameters

Optimization for Tensile Strength using Taguchi and ANOVA. Materials Today: Proceedings, 28(1), 375-380.

Zeng, S., Li, S., Zhang, Y., Tian, X., Yang, Z., & Li, H. (2021). Support Optimization for Fused Deposition Modeling 3D Printing with Performance Analysis. Polymers, 13(9), 1420.

Farhan, M., Nordin, M. J., Anwer, N., & Fazal-E-Amin. (2019). Optimization of 3D Printing Parameters for Print Quality Improvement. In 2019 9th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 9-13). IEEE.

Smith, A., et al. (2019). "Scalable G-code Parsing using Parallel Processing." International Journal of Advanced Manufacturing Technology, 45(6), 789-802.

Kampitakis, M., Samaras, N., Vlachakis, I., Giannoukos, S., & Grammalidis, N. (2017). On the Extraction of 3D Printing Parameters from G-Code Files for Forensic Analysis. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 5, pp. 94-101).

Johnson, M., Lee, H. (2019). "Regular Expression Techniques for G-code Parsing." Proceedings of the International Conference on Automation and Robotics, 87-94.

Pires, A. J., Machado, J. A. T., & Oliveira, M. F. (2017). G-Code Analysis for 3D Printers. In Advances in Intelligent Systems and Computing (Vol. 529, pp. 81-89). Springer.

Chen, Q., et al. (2018). "Metadata Extraction for Improved Printing Processes." Additive Manufacturing, 21, 45-52.

Li, X., et al. (2021). "Machine Learning Applications in Slicer Parameter Prediction." Computers in Industry, 90, 45-53.

Bhattacharya, A., Ray, S., & Naskar, R. (2021). Deep Learning-Based G-Code Analysis and Slicing Parameter Extraction for Additive Manufacturing. Journal of Manufacturing Science and Engineering, 143(8), 081004.

Zhao, Y., Wang, T., Li, Y., & Tian, L. (2021). Reinforcement Learning-Based Extrusion Width Optimization in Fused Deposition Modeling. IEEE Transactions on Industrial Informatics. doi: 10.1109/TII.2021.3053675

Jones, R., Kim, Y. (2020). "Distributed Computing for Scalable Parameter Extraction in Additive Manufacturing." Journal of Computer-Aided Design and Applications, 38(9), 1132-1145.

Delli, U., Chang, S. (2018). Automated Process Monitoring in 3D Printing Using Supervised Machine Learning. Procedia Manufacturing, 26, 865–870. https://doi.org/10.1016/j.promfg.2018.07.111

Dey, A., Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3). https://doi.org/10.3390/jmmp3030064

Fernandes, J., Deus, A. M., Reis, L., Vaz, M. F., & Leite, M. (2018). Study of the influence of 3D printing parameters on the mechanical properties of PLA. Proceedings of the International Conference on Progress in Additive Manufacturing, 2018-May(May), 547–552. https://doi.org/10.25341/D4988C

Ei Ei Cho , Ho Hin Hein , Zarni Lynn , Saw Jiemie Hla , and Thanh Tran.“Investigation on Influence of Infill Pattern and Layer Thickness on Mechanical Strength of PLA Material in 3D Printing Technology,” J. Eng. Sci. Res., vol. 3, no. 2, pp. 27–37,2019, doi: 10.26666/rmp.jesr.2019.2.5.

M. O. Alabi, K. Nixon, and I. Botef, “A Survey on Recent Applications of Machine Learning with Big Data in Additive Manufacturing Industry,” Am. J. Eng. Appl. Sci., vol. 11, no. 3, pp. 1114–1124, 2018, doi: 10.3844/ajeassp.2018.1114.1124.




How to Cite

Patil, S. ., Deshpande, Y. ., & Parle, D. . (2024). Extracting Slicer Parameters from STL file in 3D Printing . International Journal of Intelligent Systems and Applications in Engineering, 12(14s), 192–204. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4654



Research Article