Decoding the Pulse: Advancements in ECG Data Encryption

Authors

  • Rajasree G, R. Mathusoothana S Kumar

Keywords:

Chaotic Baker map, Discrete Wavelet Transform, Dual Random Phase Encoding, Encryption.

Abstract

The ever-advancing landscape of digital healthcare, it is crucial to securely transmit biomedical data, particularly the vital Electrocardiogram (ECG) signal, over the internet to hospital facilities. This study presents a novel encryption scheme for Electrocardiogram data by leveraging the Chaotic Baker map, Discrete Wavelet Transform and Dual Random Phase Encoding (DRPE). The methodology involves a three-step process designed to enhance security and effectively obscure original ECG information. The first step incorporates a randomized fusion of wavelet coefficients with a random signal, introducing variability. Subsequently, encryption scheme is implemented using 2-D Discrete Wavelet Transform (DWT) to mask the ECG signal and the speech signal, effectively concealing repetitive patterns. The third step employs DRPE, utilizing 2 Random Phase Masks (RPMs) to modify the spectrum of the transformed 2-D ECG signal. This multifaceted approach integrates random projection, salting, chaos-based encryption, and DRPE, providing a layered strategy for securing sensitive ECG data. Decryption involves the reverse application of these steps, ensuring the secure retrieval of the original ECG information. The proposed encryption methodology offers a robust solution for safeguarding ECG data across diverse applications.

Downloads

Download data is not yet available.

References

Badr, M., Al-Otaibi, S., Alturki, N., & Abir, T. (2022). Detection of heart arrhythmia on electrocardiogram using artificial neural networks. Computational Intelligence and Neuroscience, 2022.

Schwartz, P. J., Ackerman, M. J., Antzelevitch, C., Bezzina, C. R., Borggrefe, M., Cuneo, B. F., & Wilde, A. A. (2020). Inherited cardiac arrhythmias. Nature Reviews Disease Primers, 6(1), 58.

Lee, R. H., Lee, M. H., Wu, C. Y., e Silva, A. C., Possoit, H. E., Hsieh, T. H., ... & Lin, H. W. (2018). Cerebral ischemia and neuroregeneration. Neural regeneration research, 13(3), 373.

Borujeni, A. M., Fathy, M., & Mozayani, N. (2019). A hierarchical, scalable architecture for a real-time monitoring system for an electrocardiography, using context-aware computing. Journal of biomedical informatics, 96, 103251.

Estévez-Báez, M., Machado, C., Montes-Brown, J., Jas-García, J., Leisman, G., Schiavi, A., ... & Carmeli, E. (2018). Very high frequency oscillations of heart rate variability in healthy humans and in patients with cardiovascular autonomic neuropathy. Progress in Medical Research, 49-70.

Harinee, S., & Mahendran, A. (2021). Secure ECG signal transmission for smart healthcare. International Journal of Performability Engineering, 17(8), 711.

Pirbhulal, S., Samuel, O. W., Wu, W., Sangaiah, A. K., & Li, G. (2019). A joint resource-aware and medical data security framework for wearable healthcare systems. Future Generation Computer Systems, 95, 382-391.

Vyakaranal, S., & Kengond, S. (2018, April). Performance analysis of symmetric key cryptographic algorithms. In 2018 international conference on communication and signal processing (ICCSP) (pp. 0411-0415). IEEE.

Uppu, R., Wolterink, T. A., Goorden, S. A., Chen, B., Škorić, B., Mosk, A. P., & Pinkse, P. W. (2019). Asymmetric cryptography with physical unclonable keys. Quantum Science and Technology, 4(4), 045011.

Stevens, H. (2018). Hans Peter Luhn and the birth of the hashing algorithm. IEEE spectrum, 55(2), 44-49.

Luo, Y., Yu, J., Lai, W., & Liu, L. (2019). A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimedia Tools and Applications, 78, 22023-22043.

Faragallah, O. S., Alzain, M. A., El-Sayed, H. S., Al-Amri, J. F., El-Shafai, W., Afifi, A., ... & Soh, B. (2018). Block-based optical color image encryption based on double random phase encoding. IEEE Access, 7, 4184-4194.

Algarni, A. D., Soliman, N. F., Abdallah, H. A., & Abd El-Samie, F. E. (2021). Encryption of ECG signals for telemedicine applications. Multimedia Tools and Applications, 80, 10679-10703.

Alqawasmi, K. E. (2022, May). Estimation of ARMA Model Order Utilizing Structural Similarity Index Algorithm. In 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT) (Vol. 1, pp. 1087-1090). IEEE.

Qiu, H., Qiu, M., & Lu, Z. (2020). Selective encryption on ECG data in body sensor network based on supervised machine learning. Information Fusion, 55, 59-67.

Abdulbaqi, A. S., Obaid, A. J., & Abdulameer, M. H. (2021). Smartphone-based ECG signals encryption for transmission and analyzing via IoMTs. Journal of Discrete Mathematical Sciences and Cryptography, 24(7), 1979-1988.

Abdulbaqi, A. S., Obaid, A. J., & Mohammed, A. H. (2021). ECG signals recruitment to implement a new technique for medical image encryption. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1663-1673.

Kh-Madhloom, J., Ghani, M. K. A., & Baharon, M. R. (2021). ECG Encryption Enhancement Technique with Multiple Layers of AES and DNA Computing. Intelligent Automation & Soft Computing, 28(2).

Sharma, S., Chen, K., & Sheth, A. (2018). Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems. IEEE Internet Computing, 22(2), 42-51.

Hameed, M. E., Ibrahim, M. M., Abd Manap, N., & Mohammed, A. A. (2020). A lossless compression and encryption mechanism for remote monitoring of ECG data using Huffman coding and CBC-AES. Future generation computer systems, 111, 829-840.

Van Fleet, P. J. (2019). Discrete wavelet transformations: An elementary approach with applications. John Wiley & Sons.

Moffat, A. (2019). Huffman coding. ACM Computing Surveys (CSUR), 52(4), 1-35.

Smid, M. E. (2021). Development of the advanced encryption standard. Journal of Research of the National Institute of Standards and Technology, 126.

Kumar, A. S., & Naik, B. R. (2023). Bilateral hashing model of ECG signal encryption system using downhill peak follow (DPF)-based encryption technique. Soft Computing, 1-9.

Patil, P., & More, S. A. (2022). Analysis of Encrypted ECG Signal in Steganography Using Wavelet Transforms. In Information and Communication Technology for Competitive Strategies (ICTCS 2020) ICT: Applications and Social Interfaces (pp. 411-419). Springer Singapore.

Adithya, B., & Santhi, G. (2022). A DNA Sequencing Medical Image Encryption System (DMIES) Using Chaos Map and Knight's Travel Map. International Journal of Reliable and Quality E-Healthcare (IJRQEH), 11(4), 1-22.

Salem, I. E., Abdulshaheed, H. R., & Gheni, H. M. (2022). A secure telemedicine electronic platform based on lightweight cryptographic approach. TELKOMNIKA (Telecommunication Computing Electronics and Control), 20(5), 988-995.

Apandi, Z. F. M., Ikeura, R., & Hayakawa, S. (2018). Arrhythmia detection using MIT-BIH dataset: A review. Proceedings of International Conference on Computational Approach in Smart Systems Design and Applications, 1-5, IEEE.

Downloads

Published

24.03.2024

How to Cite

R. Mathusoothana S Kumar, R. G. . (2024). Decoding the Pulse: Advancements in ECG Data Encryption . International Journal of Intelligent Systems and Applications in Engineering, 12(3), 2225–2234. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5691

Issue

Section

Research Article