Investigation on Electrochemical Mechanical Polishing: Review

Authors

  • Jalpesh H. Solanki, Amit B. Panchal, Chirag A. Maradiya, Divyesh B. Patel, Jay M. Pujara, Haresh Z. Parmar

Keywords:

ECMP-Electrochemical mechanical polishing, EP-Electro polishing, IEG-Inter electrode gap, ECF-Electrochemical finishing, MNM-Micro nano machining

Abstract

The complex process of electropolishing involves both electrical and chemical reaction, and it is impacted by a number of process variables, including workpiece rotation, temperature, electrolyte types, and current densi-ty. The electropolishing process remains largely unexplained by any existing theory, particularly in light of recent improvements that have made the material removal mechanism increasingly difficult to comprehend. In order to provide readers with a brief understanding of the material removal mechanism, this paper reviews the fundamental theories and aspects of electricity and chemical reaction. A variety of process factors, including current density, temperature, and electrolyte types reviewed by different researchers, influence the mechanism. Lastly, an overview of the electropolishing technique's development is given as a resource for further study.

Downloads

Download data is not yet available.

References

J. Huo, R. Solanki, and J. McAndrew, (2003) “Electro-chemical Polishing of Copper for Microelectronic Applica-tions,” Surf. Eng., vol. 19, no. 1, pp. 11–16, doi: 10.1179/026708402225010047.

S.-J. Lee and J.-J. Lai,(2003) “The effects of elec-tropolishing (EP) process parameters on corrosion resistance of 316L stainless steel,” J. Mater. Process. Technol., vol. 140, no. 1, pp. 206–210, doi: 10.1016/S0924-0136(03)00785-4.

Y.-L. Chen, S.-M. Zhu, S.-J. Lee, and J. C. Wang, (2003) “The technology combined electrochemical mechanical pol-ishing,” J. Mater. Process. Technol., vol. 140, no. 1, pp. 203–205, doi: 10.1016/S0924-0136(03)00826-4.

J.-H. Horng, Y.-R. Jeng, and C.-L. Chen (2004), “A Model for Temperature Rise of Polishing Process Consider-ing Effects of Polishing Pad and Abrasive,” J. Tribol., vol. 126, no. 3, pp. 422–429, doi: 10.1115/1.1705665.

S.-J. Lee, Y.-M. Lee, and M.-Y. Chung (2006), “Metal Removal Rate of the Electrochemical Mechanical Polishing Technology for Stainless Steel - The Electrochemical Char-acteristics,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 220, no. 4, pp. 525–530, doi: 10.1243/0954405054JEM232.

N. Kulyk et al. (2010), “Study on electrochemical me-chanical polishing process of copper circuit on PCB,” Kore-an J. Chem. Eng., vol. 27, no. 1, pp. 310–314, doi: 10.1007/s11814-009-0289-1.

J. Ebert, S. Ghosal, A. Emami-Naeini (2012), “Experi-mental Validation of Model of Electro-Chemical-Mechanical Planarization (ECMP) of Copper,” presented at the Proceed-ings of the 2012 COMSOL Conference, Availa-ble:https://www.comsol.com/paper/experimental-validation-of-model-of-electro-chemical-mechanical-planarization-ec-13006.

P. B. Tailor, A. Agrawal, and S. S. Joshi (2013), “Evolu-tion of electrochemical finishing processes through cross innovations and modeling,” Int. J. Mach. Tools Manuf., vol. 66, pp. 15–36, doi: 10.1016/j.ijmachtools.2012.11.005.

E. J. Taylor and M. Inman, “Electrochemical Surface Finishing (2014),” Electrochem. Soc. Interface, vol. 23, no. 3, p. 57, doi: 10.1149/2.F05143if.

K. B. Judal and V. Yadava (2013), “Cylindrical Electro-chemical Magnetic Abrasive Machining of AISI-304 Stain-less Steel,” Mater. Manuf. Process., vol. 28, no. 4, pp. 449–456, doi: 10.1080/10426914.2012.736653.

L. Tang and Y.-F. Guo (2013), “Experimental Study of Special Purpose Stainless Steel on Electrochemical Machin-ing of Electrolyte Composition,” Mater. Manuf. Process., vol. 28, no. 4, pp. 457–462, doi: 10.1080/10426914.2012.746784.

R. Kuppuswamy and K. Mubita (2017), “Electro-polishing of tungsten carbide ball nose end mill to improve tool life,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 231, no. 4, pp. 667–675, doi: 10.1177/0954408915622595.

A. A. Gomez-Gallegos, F. Mill, and A. R. Mount (2016), “Surface finish control by electrochemical polishing in stainless steel 316 pipes,” J. Manuf. Process., vol. 23, pp.83–89,doi: 10.1016/j.jmapro.2016.05.010.

A. E. K. Mohammad and D. Wang (2016), “Electro-chemical mechanical polishing technology: recent develop-ments and future research and industrial needs,” Int. J. Adv. Manuf. Technol., vol. 86, no. 5, pp. 1909–1924, doi: 10.1007/s00170-015-8119-6.

G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, and G. Chen (2017), “Electropolishing of surfaces: theory and ap-plications,” Surf. Eng., vol. 33, no. 2, pp. 149–166, doi: 10.1080/02670844.2016.1198452.

V. Zatkalíková, L. Markovičová, and M. Škorvanová (2017), “Corrosion behaviour of electropolished AISI 316L austenitic biomaterial in physiological solution,” IOP Conf. Ser. Mater. Sci. Eng., vol. 266, p. 012016, Nov. 2017, doi: 10.1088/1757-899X/266/1/012016.

D. Zhan, L. Han, J. Zhang, Q. He, Z.-W. Tian, and Z.-Q. Tian (2017), “Electrochemical micro/nano-machining: prin-ciples and practices,” Chem. Soc. Rev., vol. 46, no. 5, pp. 1526–1544, doi: 10.1039/C6CS00735J.

M. Kapui and R. Kuppuswamy (2017), “Influence of electro-polishing characteristics on needle-tissue interaction forces,” Afr. J. Sci. Technol. Innov. Dev., vol. 9, no.6,pp.707715,doi:10.1080/20421338.2017.1359446.

A. E. K. Mohammad, J. Hong, D. Wang, and Y. Guan (2019), “Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing ap-plications,” Robot. Comput.-Integr. Manuf., vol. 55, pp. 65–75,doi: 10.1016/j.rcim.2018.07.005.

G. Liu, Y. Li, Q. Kong, and L. Yu (2018), “Impact Analysis of Electrolyte Pressure on Shape Accuracy of Mi-cro Holes in ECM with Hollow Electrodes,” Procedia CIRP, vol. 68, pp. 420–425, doi: 10.1016/j.procir.2017.12.089.

H. Luo, D. Mi, and W. Natsu (2019), “Characteristics of ECM polishing influenced by workpiece corner feature and electrolyte flow,” Precis. Eng., vol. 56, pp. 330–342,doi: 10.1016/j.precisioneng.2019.01.003.

X. Yang et al. (2018), “Investigation of anodic oxidation mechanism of 4H-SiC (0001) for electrochemical mechanical polishing,” Electrochimica Acta, vol. 271, pp. 666676,doi: 10.1016/j.electacta.2018.03.184.

A. A. Kityk, V. S. Protsenko, F. I. Danilov, O. V. Kun, and S. A. Korniy (2019), “Electropolishing of aluminium in a deep eutectic solvent,” Surf. Coat. Technol., vol. 375, pp. 143–149, doi: 10.1016/j.surfcoat.2019.07.018.

D. Wu, R. Kang, J. Guo, Z. Liu, C. Wan, and Z. Jin(2019), “On the reaction mechanism of a hydroxyethyli-dene diphosphonic acid-based electrolyte for electrochemical mechanical polishing of copper,” Electrochem. Commun., vol. 103, pp. 48–54, doi: 10.1016/j.elecom.2019.05.001.

F. Wang, X. Zhang, and H. Deng (2019), “A compre-hensive study on electrochemical polishing of tungsten,” Appl. Surf. Sci., vol. 475, pp. 587–597, doi: 10.1016/j.apsusc.2019.01.020.

W. Han and F. Fang (2019), “Fundamental aspects and recent developments in electropolishing,” Int. J. Mach. Tools Manuf., vol. 139, pp. 1–23, doi: 10.1016/j.ijmachtools.2019.01.001.

X. Yang, X. Yang, K. Kawai, K. Arima, and K. Yama-mura (2019), “Highly efficient planarization of sliced 4H–SiC (0001) wafer by slurryless electrochemical mechanical polishing,” Int. J. Mach. Tools Manuf., vol. 144, p. 103431, doi: 10.1016/j.ijmachtools.2019.103431.

Z. Liu, Z. Jin, D. Wu, and J. Guo (2019), “Investigation on Material Removal Uniformity in Electrochemical Me-chanical Polishing by Polishing Pad with Holes,” ECS J. Solid State Sci. Technol., vol. 8, no. 5, p. P3047, doi: 10.1149/2.0071905jss.

J. Murata and D. Nagatomo (2020), “Investigation of Electrolytic Condition on Abrasive-Free Electrochemical Mechanical Polishing of 4H-SiC Using Ce Thin Film,” ECS J. Solid State Sci. Technol., vol. 9, no. 3, p. 034002, doi: 10.1149/2162-8777/ab7672.

W. Han and F.-Z. Fang (2020), “Investigation of elec-tropolishing characteristics of tungsten in eco-friendly sodi-um hydroxide aqueous solution,” Adv. Manuf., vol. 8, no. 3, pp. 265–278, doi: 10.1007/s40436-020-00309-y.

X. Yin (2020), “Investigation of SiC Single Crystal Polishing by Combination of Anodic Oxidation and Me-chanical Polishing,” Int. J. Electrochem. Sci., pp. 4388–4405, doi: 10.20964/2020.05.66.

Downloads

Published

12.06.2024

How to Cite

Jalpesh H. Solanki. (2024). Investigation on Electrochemical Mechanical Polishing: Review. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 1801–1807. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6493

Issue

Section

Research Article