Effectiveness of Curcuma-Black Cumin Honey on Hemoglobin Levels, Iron, and Folate Intake in Stunted Children at Cirebon

Authors

  • Siti Pandawangi TW, Akrom, Nurkhasanah, Ahmad Azrul Zuniarto

Keywords:

Curcuma-Black Cumin Honey; Hemoglobin; Stunting.

Abstract

Chronic malnutrition, especially iron and folate intake, is one of the causes of anemia. Children who are stunted often suffer from anemia, a condition where hemoglobin levels are below normal. Honey is rich in nutrients. Curcuma can increase appetite and black cumin can improve the immune system. This research aimed to determine the effectiveness of Curcuma-black cumin honey in increasing hemoglobin (Hb) levels, and iron and folate intake. This type of research is quasi-experimental research with a pre-test-post-test design. The population is stunted children in Tegalwangi, the working area of the Karangsari Cirebon Community Health Center. Samples aged 24-60 months were divided into a control group (no treatment) and a treatment group (consuming honey once a day for 4 months). The research was carried out from February to May 2023. Data on iron and folate intake was obtained from Nutrition recall results which were converted to Nutrisurvey software. Hemoglobin data from blood sample analysis. There was an increase in hemoglobin levels, iron intake, and folate intake in the treatment and control groups. Based on the Independent Sample T-Test, the difference in hemoglobin levels in pre-test and post-test samples was P < 0.05, and in controls P > 0.05. The difference in sample iron intake was P < 0.05, control group P > 0.05 The difference in folate intake in the sample group was P < 0.05, and the control group was P < 0.05. In this research, the effectiveness of maducurcuma-black cumin on hemoglobin levels and iron and folate intake.

Downloads

Download data is not yet available.

References

Abbas, K. A. (2020). Transportation and The Use of Oxygen. Indonesian Journal of Anesthesiology and Reanimation, 1(2), 58. https://doi.org/10.20473/ijar.v1i22019.58-63

Gell, D. A. (2018). Structure and function of hemoglobins. Blood Cells, Molecules & Diseases, 70, 13–42. https://doi.org/10.1016/j.bcmd.2017.10.006

Li, X. L., Dong, P., Tian, M., Ni, J. X., & Smith, F. G. (2015). Oxygen carrying capacity of salvaged blood in patients undergoing off-pump coronary artery bypass grafting surgery: a prospective observational study. Journal of Cardiothoracic Surgery, 10, 126. https://doi.org/10.1186/s13019-015-0330-x

Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020a). Hemoglobin: Structure, Function, and Allostery. Sub-Cellular Biochemistry, 94, 345–382. https://doi.org/10.1007/978-3-030-41769-7_14

Setiawan, A., Suryani, E., &, W. (2016). Image Segmentation of Red Blood Cells Based on Cell Morphology to Detect Iron Deficiency Anemia. Journal of Technology & Information ITSmart, 3(1), 01. https://doi.org/10.20961/its.v3i1.638

Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(2), 164–174.

Adani, F. Y., & Nindya, T. S. (2017). Differences in Energy, Protein, Zinc Intake, and Development in Stunting and Non-Stunting Toddlers Amerta Nutrition, 1(2), 46. https://doi.org/10.20473/amnt.v1i2.6225.

Aderibigbe. (2018). The Relationship of Iron (Fe) Intake with Stunting Events, 6(1), 1–8.

Chaparro, C. M., & Sachdev, P. S. (2019). Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Annals of the New York Academy of Sciences, 1450(1), 15–31. https://doi.org/10.1111/nyas.14092.

Ekholuenetale, M., Okonji, O. C., Nzoputam, C. I., & Barrow, A. (2022). Inequalities in the prevalence of stunting, anemia, and exclusive breastfeeding among African children. BMC Pediatrics, 22(1), 333. https://doi.org/10.1186/s12887-022-03395-y

Low, M. S. Y., Speedy, J., Styles, C. E., De-Regil, L. M., & Pasricha, S.-R. (2016a). Daily iron supplementation for improving anemia, iron status, and health in menstruating women. The Cochrane Database of Systematic Reviews, 4, CD009747. https://doi.org/10.1002/14651858.CD009747.pub2

Giardina, B., Messana, I., Scatena, R., & Castagnola, M. (1995). The multiple functions of hemoglobin. Critical Reviews in Biochemistry and Molecular Biology, 30(3), 165–196. https://doi.org/10.3109/104092395090851429

Barney, J., & Moosavi, L. (2023). Iron.

Wiafe, M. A., Apprey, C., & Annan, R. A. (2020). Patterns of Dietary Iron Intake, Iron Status, and Predictors of Haemoglobin Levels among Early Adolescents in a Rural Ghanaian District. Journal of Nutrition and Metabolism, 2020. https://doi.org/10.1155/2020/3183281

Vogt, A.-C. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094591

Ogawa, C., Tsuchiya, K., & Maeda, K. (2020). Reticulocyte hemoglobin content. Clinica Chimica Acta; International Journal of Clinical Chemistry, 504, 138–145. https://doi.org/10.1016/j.cca.2020.01.032

Nakamura, T., Naguro, I., & Ichijo, H. (2019). Iron homeostasis and iron-regulated ROS in cell death, senescence, and human diseases. Biochimica et Biophysica Acta. General Subjects, 1863(9), 1398–1409. https://doi.org/10.1016/j.bbagen.2019.06.010

Merrell, B. J., & McMurry, J. P. (2023). Folic Acid.

Scaglione, F., & Panzavolta, G. (2014). Folate, folic acid, and 5-methyltetrahydrofolate are not the same thing. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 44(5), 480–488. https://doi.org/10.3109/00498254.2013.845705

van Gool, J. D., Hirche, H., Lax, H., & De Schaepdrijver, L. (2018). Folic acid and primary prevention of neural tube defects: A review. Reproductive Toxicology (Elmsford, N.Y.), 80, 73–84. https://doi.org/10.1016/j.reprotox.2018.05.004

Sijilmassi, O. (2019). Folic acid deficiency and vision: a review. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 257(8), 1573–1580. https://doi.org/10.1007/s00417-019-04304-3

Arfiyanti. (2013). Cookies Snakehead Fish as an Additional Food for Pregnant Women in the Second Trimester. Prosiding Semirata FMIPA Universitas Lampung, 1–7.

Losong, N. H. F., & Adriani, M. (2017). Differences in Hemoglobin Levels, Iron and Zinc Intake in Stunting and Non-Stunting Toddlers. Amerta Nutrition, 1(2), 117. https://doi.org/10.20473/amnt.v1i2.6233

Rabbani, A., Khan, A., Yusuf, S., & Adams, A. (2016). Trends and determinants of inequities in childhood stunting in Bangladesh from 1996/7 to 2014. International Journal for Equity in Health, 15(1), 1–14. https://doi.org/10.1186/s12939-016-0477-7

Fihri, A. F., Al-Waili, N. S., El-Haskoury, R., Bakour, M., Amarti, A., Ansari, M. J., & Lyoussi, B. (2016). Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 39(1), 115–122. https://doi.org/10.1159/000445610

. Nurhayati. (2022). Giving Black Cumin (Nigella Sativa L) and Honey (Apis Mellifera) as Iron Supplements to increase Maternal Hemoglobin Levels. Jurnal Kebidanan Indonesia, 02(November), 327–335. https://doi.org/10.53801/sjki.v2i2.97

Rahmat, E., Lee, J., & Kang, Y. (2021). Phytochemistry, Biotechnology, and Pharmacological Activities. Hindawi Evidence-Based Complementary and Alternative Medicine, 2021, 15.

Gautam, S. C., Gao, X., & Dulchavsky, S. (2007). Immunomodulation by curcumin. Advances in Experimental Medicine and Biology, 595, 321–341. https://doi.org/10.1007/978-0-387-46401-5_14

Syamsudin, R. A. M. R., Perdana, F., & Mutiaz, F. S. (2019). Temulawak Plant (Curcuma xanthorrhiza Roxb) as Traditional Medicine. Maritime Pharmacology Scientific Journal. https://doi.org/10.52434/jfb.v10i1.648

Alimohamadi, K., Taherpour, K., Ghasemi, H. A., & Fatahnia, F. (2014). Comparative effects of using black seed (Nigella sativa), cumin seed (Cuminum cyminum), probiotic or prebiotic on growth performance, blood hematology, and serum biochemistry of broiler chicks. Journal of Animal Physiology and Animal Nutrition, 98(3), 538–546. https://doi.org/10.1111/jpn.12115

Rasheed, Z., Alharbi, A., Alrakebeh, A., Almansour, K., Almadi, A., Almuzaini, A., Salem, M., Aloboody, B., Alkobair, A., Albegami, A., Alhomaidan, H. T., Rasheed, N., Alqossayir, F. M., Musa, K. H., Hamad, E. M., & Al Abdulmonem, W. (2022). Thymoquinone provides structural protection of human hemoglobin against oxidative damage: Biochemical studies. Biochimie, 192, 102–110. https://doi.org/10.1016/j.biochi.2021.10.005

MKes (Epid), Dr. A. C. (2020). Stunting Prevention and Management. In Epidemiology of Stunting. https://r.search.yahoo.com/_ylt=Awrxw_53QaJhPmUA3w_LQwx.;_ylu=Y29sbwNzZzMEcG9zAzQEdnRpZAMEc2VjA3Ny/RV=2/RE=1638052344/RO=10/RU=http%3A%2F%2Feprints.undip.ac.id%2F80670%2F1%2FBuku_EPIDEMIOLOGI_STUNTING_KOMPLIT.pdf/RK=2/RS=BFSY8aq0Lx1bha7MtII8PgwQwYU-5

Black, R. E., & Heidkamp, R. (2018). Causes of Stunting and Preventive Dietary Interventions in Pregnancy and Early Childhood. Nestle Nutrition Institute Workshop Series, 89, 105–113. https://doi.org/10.1159/000486496 36.

Maleta, K., Kuittinen, J., Duggan, M. B., Briend, A., Manary, M., Wales, J., Kulmala, T., & Ashorn, P. (2004). Supplementary feeding of underweight, stunted Malawian children with ready-to-use food. Journal of Pediatric Gastroenterology and Nutrition, 38(2), 152–158. https://doi.org/10.1097/00005176-200402000-00010

Mustakim, M. R. D., Irwanto, Irawan, R., Irmawati, M., & Setyoboedi, B. (2022). Impact of Stunting on Development of Children between 1-3 Years of Age. Ethiopian Journal of Health Sciences, 32(3), 569–578. https://doi.org/10.4314/ejhs.v32i3.13

Rahayu, A., Yulidasari, F., Putri, A. O., & Anggraini, L. (2018). Study Guide - Stunting dan Upaya Pencegahannya. In Buku stunting dan upaya pencegahannya.

Nugraheni, A., Margawati, A., Wahyudi, F., & Utami, A. (2023). The Relationship between Stunting and Anemia, Morbidity and Development of Toddlers at the Kebondalem Health Center, Pemalang. 7(1), 15–24

Yoshida, T., Prudent, M., & D’alessandro, A. (2019). Red blood cell storage lesion causes and potential clinical consequences. Blood Transfusion = Trasfusione Del Sangue, 17(1), 27–52. https://doi.org/10.2450/2019.0217-18

Novikasari, L., & Setiawati, S. (2021). The effectiveness of giving ginger and honey on increasing the weight of children with poor nutritional status. Holistik Jurnal Kesehatan, 15(2), 197–202. https://doi.org/10.33024/hjk.v15i2.1666

Citra, D., Gunawan, D., Program, Y., S1, S., Gizi, I., Kesehatan, I., & Yogyakarta, U. R. (2019). The intervention of nutrition management can increase hemoglobin levels and development in stunted toddlers. Indonesian Journal of Clinical Nutrition, 15(4), 128–136

Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., & Battino, M. (2010). Contribution of honey in nutrition and human health: A review. Mediterranean Journal of Nutrition and Metabolism, 3(1), 15–23. https://doi.org/10.1007/s12349-009-0051-6

Downloads

Published

09.07.2024

How to Cite

Siti Pandawangi TW. (2024). Effectiveness of Curcuma-Black Cumin Honey on Hemoglobin Levels, Iron, and Folate Intake in Stunted Children at Cirebon. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 869 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6567

Issue

Section

Research Article