Mitigation of Ionospheric Scintillations Effect on NavIC Signals Using Multipath Parameter and Rate of TEC Index
Keywords:
NavIC; Scintillation; Rate of TEC Index; Multipath parameter (MP); Precise Point PositioningAbstract
Improving the precision of Navigation with Indian Constellation (NavIC) positioning requires addressing the disturbances presented by ionosphere scintillation. Errors like cycle slip and measurement disparities are introduced by this phenomenon, which affects satellite lock and, in severe situations results in positioning failures. The usefulness of traditional scintillation parameters, S4 and , is limited since they need high-frequency data. Using 1 Hz data, this research investigates the usage of the multipath parameter (MP) and the rate of total electron content index (ROTI) as substitutes for scintillation parameters. Satellite removal is greatly outperformed by procedures incorporating observation removal and noise matrix weighting, according to comparative analysis and validation against standard parameters (S4 and ). The suggested methods show an impressive 93.14% increase in Precise Point Positioning (PPP) outputs, proving that ROTI and MP are effective at reducing scintillation effects.
Downloads
References
Aquino, M.; Sreeja, V. Correlation of scintillation occurrence with interplanetary magnetic field reversals and impact on Global Navigation Satellite System receiver tracking performance. Space Weather 2013, 11, 219–224.
Li, Q.; Su, X.; Xu, Y.; Ma, H.; Liu, Z.; Cui, J.; Geng, T. Performance Analysis of GPS/BDS Broadcast Ionospheric Models in Standard Point Positioning during 2021 Strong Geomagnetic Storms. Remote Sens. 2022, 14, 4424.
Luo, X.; Liu, Z.; Lou, Y.; Gu, S.; Chen, B. A study of multi-GNSS ionospheric scintillation and cycle-slip over Hong Kong region for moderate solar flux conditions. Adv. Space Res. 2017, 60, 1039–1053.
Humphreys, T.E.; Psiaki, M.L.; Kintner, P.M. Modeling the effects of ionospheric scintillation on GPS carrier phase tracking. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1624–1637.
Van Dierendonck, A.J.; Klobuchar, J.A.; Hua, Q. Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers. In Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, USA, 22–24 September 1993.
Aquino, M.; Dodson, A.; deFranceschi, G.; Alfonsi, L.; Romano, V.; Monico, J.; Marques, H.; Mitchell, C. Towards forecasting and mitigating ionospheric scintillation effects on GNSS. In Proceedings of the ELMAR 2007, Zadar, Croatia, 12–14 September 2007.
Conker, R.S.; El-Arini, M.B.; Hegarty, C.J.; Hsiao, T. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability. Radio Sci. 2003, 38, 1001.
Aquino, M.; Monico, J.F.G.; Dodson, A.H.; Marques, H.; De Franceschi, G.; Alfonsi, L.; Romano, V.; Andreotti, M. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation. J. Geod. 2009, 83, 953–966.
Park, J.; Vadakke Veettil, S.; Aquino, M.; Yang, L.; Cesaroni, C. Mitigation of Ionospheric Effects on GNSS Positioning at Low Latitudes. Navigation 2017, 64, 67–74.
Vadakke Veettil, S.; Aquino, M.; Marques, H.A.; Moraes, A. Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J. Geod. 2020, 94, 15.
de Oliveira Moraes, A.; Costa, E.; de Paula, E.R.; Perrella, W.J.; Monico, J.F.G. Extended ionospheric amplitude scintillation model for GPS receivers. Radio Sci. 2014, 49, 315–329.
Bougard, B.; Simsky, A.; Sleewaegen, J.-M.; Park, J.; Aquino, M.; Spogli, L.; Romano, V.; Mendonça, M.; Monico, G. CALIBRA: Mitigating the impact of ionospheric scintillation on Precise Point Positioning in Brazil. In Proceedings of the GNSS Vulnerabilities and Solutions Conference, Baška, Krk Island, Croatia, 18–20 April 2013.
Marques, H.A.; Marques, H.A.S.; Aquino, M.; Vadakke Veettil, S.; Monico, J.F.G. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects. J. Space Weather Space Clim. 2018, 8, A15.
Vilà-Valls, J.; Linty, N.; Closas, P.; Dovis, F.; Curran, J.T. Survey on signal processing for GNSS under ionospheric scintillation: Detection, monitoring, and mitigation. Navigation 2020, 67, 511–536.
Nguyen, V.K.; Rovira-Garcia, A.; Juan, J.M.; Sanz, J.; González-Casado, G.; La, T.V.; Ta, T.H. Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz. J. Geod. 2019, 93, 1985–2001.
Luo, X.; Gu, S.; Lou, Y.; Cai, L.; Liu, Z. Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1 Hz. J. Geod. 2020, 94, 27.
Zhao, D.; Li, W.; Li, C.; Tang, X.; Zhang, K. Extracting an ionospheric phase scintillation index based on 1 Hz GNSS observations and its verification in the Arctic region. Acta Geod. Et Cartogr. Sin. 2021, 50, 368–383.
Zhao, D.; Li, W.; Li, C.; Tang, X.; Wang, Q.; Hancock, C.M.; Roberts, G.W.; Zhang, K. Ionospheric Phase Scintillation Index Estimation Based on 1 Hz Geodetic GNSS Receiver Measurements by Using Continuous Wavelet Transform. Space Weather 2022, 20, e2021SW003015.
IGS. International GNSS Service. Available online: https://igs.org/ (accessed on 23 November 2021).
Li, C.; Hancock, C.M.; Hamm, N.A.S.; Vadakke Veettil, S.; You, C. Analysis of the Relationship between Scintillation Parameters, Multipath and ROTI. Sensors 2020, 20, 2877.
Yang, Z.; Liu, Z. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut. 2016, 20, 815–824.
Olwendo, J.O.; Cilliers, P.; Weimin, Z.; Ming, O.; Yu, X. Validation of ROTI for Ionospheric Amplitude Scintillation Measurements in a Low-Latitude Region Over Africa. Radio Sci. 2018, 53, 876–887.
Acharya, R.; Majumdar, S. Statistical relation of scintillation index S4 with ionospheric irregularity index ROTI over Indian equatorial region. Adv. Space Res. 2019, 64, 1019–1033.
Basu, S.; Groves, K.M.; Quinn, J.M.; Doherty, P. A comparison of TEC fluctuations and scintillations at Ascension Island. J. Atmos. Sol.-Terr. Phys. 1999, 61, 1219–1226.
Romano, V.; Spogli, L.; Aquino, M.; Dodson, A.; Hancock, C.; Forte, B. GNSS station characterisation for ionospheric scintillation applications. Adv. Space Res. 2013, 52, 1237–1246.
Hancock, C.M.; Ligt, H.D.; Xu, T. The possibility of using GNSS quality control parameters to assess ionospheric scintillation errors. In Proceedings of the Fig WorkingWeek, Helsinki, Finland, 29 May–2 June 2017.
Li, C.; Hancock, C.M.; Vadakke Veettil, S.; Zhao, D.; Galera Monico, J.F.; Hamm, N.A.S. Distinguishing ionospheric scintillation from multipath in GNSS signals using geodetic receivers. GPS Solut. 2022, 26, 150.
Bahadur, B.; Nohutcu, M. PPPH: A MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut. 2018, 22, 113.
Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286.
Estey, L.H.; Meertens, C.M. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solut. 1999, 3, 42–49.
Estey, L.; Meertens, C. Teqc Tutorial: Basic of Teqc Use and Teqc Products; UNAVCO Inc.: Boulder, CO, USA, 2014.
Axelrad, P.; Brown, R.G. GPS Navigation Algorithms. In Global Positioning System: Theory and Applications, Volume I; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996; pp. 409–433.
An, X.; Meng, X.; Jiang, W. Multi-constellation GNSS precise point positioning with multi-frequency raw observations and dual-frequency observations of ionospheric-free linear combination. Satell. Navig. 2020, 1, 7.
Jiao, Y.; Morton, Y.T. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci. 2015, 50, 886–903.
Mireault, Y.; Tétreault, P.; Lahaye, F.; Héroux, P.; Kouba, J. Online precise point positioning: A new, timely service from Natural Resources Canada. GPS World 2008, 19, 59–64.
Spilker, J. Satellite Constellation and Geometric Dilution of Precision. In Global Positioning System: Theory and Applications, Volume I; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996; pp. 177–208.
Lulu, W.; Zaimin, H.; Zhenxing, H.; Yuanyuan, H.; Gang, L. Single-chain hyperbolic positioning GDOP calculation based on longitude transformation method. J. Time Freq. 2020, 43, 196–203.
Mohammed, J.J. Precise Point Positioning (PPP): GPS vs. GLONASS and GPS+GLONASS with an Alternative Strategy for Tropospheric Zenith Total Delay (ZTD) Estimation. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. Unpublished work.
K.C.T.Swamy, Devanaboyina, Venkata Ratnam, Nallagarla, Ramamurthy, Shaik, Towseef Ahmed and Turpati, Suman. "Correlation between rate of TEC index and positioning error during solar flares and geomagnetic storms using navigation with Indian constellation receiver measurements" Journal of Applied Geodesy, 2024.
Roberts, G.W.; Fossá, S.; Jepsen, C. Temporal characteristics of triple-frequency GNSS scintillation during a visible aurora borealis event over the Faroe Islands amid a period of very low solar activity. GPS Solut. 2019, 23, 89.
Zhang, X.; Li, P.; Tu, R.; Lu, X.; Ge, M.; Schuh, H. Automatic Calibration of Process Noise Matrix and Measurement Noise Covariance for Multi-GNSS Precise Point Positioning. Mathematics 2020, 8, 502.
Langley, R.B. Dilution of Precision. In GPS World; North Coast Media: Cleveland, OH, USA, 1999; Volume 10, pp. 52–59.
Guo, F.; Zhang, X. Adaptive robust Kalman filtering for precise point positioning. Meas. Sci. Technol. 2014, 25, 105011.
K.C.T. Swamy, D. Venkata Ratnam, T. Suman, S. Towseef Ahmed, Time-differenced double difference method for measurement of Navigation with Indian Constellation (NavIC) receiver differential phase bias,
Measurement, Volume 207, 2023, 112385.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.