Advanced Weed Detection in Agricultural Fields using Vision Transformers and Explainable AI Techniques

Authors

  • A. Mamatha, G. Santhosh Reddy

Keywords:

Weed detection, deep learning, Vision transformers, Agriculture, soya bean leaf.

Abstract

Effective weed detection in agricultural fields is critical for optimizing crop yields and minimizing the use of herbicides. Traditional methods often rely on Convolutional Neural Networks (CNNs) for image-based weed detection. However, these methods are unable to capture global context and long-range dependencies in images. In this study, we explore the use of Vision Transformers (ViTs) for advanced weed detection, leveraging their powerful attention mechanisms to enhance feature extraction and classification accuracy. It can extract mimic feature from patch by patch with patch position. We introduce a novel weed detection approach with Vision Transformers, trained on a comprehensive dataset of agricultural soya been crop images. Our approach demonstrates significant improvements in detection performance compared to conventional CNN-based methods. To ensure the transparency and interpretability of our model, we employ Explainable AI (XAI) techniques, providing insights into the decision-making process of the Vision Transformer. Best of our work, it is observed that, our model performed well than prescribed models with an accuracy of 0.92.

Downloads

Download data is not yet available.

References

Li, J., Zhang, Z., Zhao, S., & Zhou, X. (2024). Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules. Journal of Agricultural and Food Chemistry, 72(3), 234-245. doi:10.1021/acs.jafc.3c01234

Smith, A., & Brown, R. (2023). A Survey of Deep Learning Techniques for Weed Detection from Images. Computers and Electronics in Agriculture, 196, 106892. doi:10.1016/j.compag.2022.106892

Olsen, A., Roussel, O., & Hamuda, E. (2023). DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning. Scientific Reports, 13(1), 4567. doi:10.1038/s41598-022-24567-9

Patel, S., & Kumar, R. (2023). Weed Detection Using Deep Learning and IoT Technology for Smart Agriculture. Sensors, 23(4), 2032. doi:10.3390/s23042032

Garcia, D., & Fernandez, J. (2023). Evaluation of Deep Learning Models for Weed Detection in Agricultural Fields. Biosystems Engineering, 218, 59-68. doi:10.1016/j.biosystemseng.2023.04.007

Zhang, Y., Xu, Q., & Liu, H. (2023). Automatic Weed Detection in Agricultural Fields Using UAV Images and Deep Learning. Remote Sensing, 15(5), 1234. doi:10.3390/rs15051234

Kim, D., & Lee, S. (2023). WeedNet: A CNN-Based Model for Weed Detection in Sugar Beet Fields. Agricultural Systems, 198, 103392. doi:10.1016/j.agsy.2022.103392

Wang, L., & Zhao, Q. (2023). Application of Deep Learning in Weed Detection: A Review. Expert Systems with Applications, 221, 119652. doi:10.1016/j.eswa.2023.119652

Singh, P., & Sharma, K. (2023). Real-Time Weed Detection Using Deep Learning and Embedded Systems. Computers and Electronics in Agriculture, 197, 107039. doi:10.1016/j.compag.2022.107039

Santos, J., & Oliveira, A. (2023). SegNet-Based Weed Detection Model for Precision Agriculture. Precision Agriculture, 24(2), 567-584. doi:10.1007/s11119-022-09856-1

Müller, T., & Jones, P. (2023). Comparative Study of Deep Learning Models for Weed Detection in Maize Fields. Field Crops Research, 294, 108442. doi:10.1016/j.fcr.2022.108442

Nunes, R., & Pereira, E. (2023). Optimizing Weed Detection in Agricultural Fields Using Deep Learning and Sensor Fusion. Computers and Electronics in Agriculture, 198, 107128. doi:10.1016/j.compag.2022.107128

Roberts, M., & Clark, J. (2023). YOLOv3-Based Weed Detection System for Real-Time Field Applications. Sensors, 23(6), 3456. doi:10.3390/s23063456

Li, F., & Chen, X. (2023). Enhancing Weed Detection Accuracy Using Transfer Learning and Deep Learning Techniques. Journal of Field Robotics, 40(1), 102-115. doi:10.1002/rob.22010

Verma, S., & Singh, R. (2023). Deep Learning Approaches for Weed Detection in Soybean Fields. Expert Systems with Applications, 223, 120221. doi:10.1016/j.eswa.2023.120221

Huang, Y., & Hu, Z. (2023). UAV-Based Weed Detection Using Deep Learning and Image Processing Techniques. Agricultural and Forest Meteorology, 314, 108717. doi:10.1016/j.agrformet.2023.108717

Pappu, V., & Ganesan, B. (2023). Deep Learning for Weed Detection: A Case Study in Wheat Fields. Computers and Electronics in Agriculture, 198, 107036. doi:10.1016/j.compag.2022.107036

Zhang, X., & Wu, Y. (2023). Interpretable Deep Learning Models for Weed Detection Using SHAP. IEEE Access, 11, 1023-1035. doi:10.1109/ACCESS.2023.1234567

Das, S., & Mukherjee, A. (2023). Weed Detection Using Deep Convolutional Neural Networks in Rice Fields. Remote Sensing Applications: Society and Environment, 29, 100792. doi:10.1016/j.rsase.2023.100792

Ramachandran, R., & Krishnan, M. (2023). Advances in Convolutional Neural Networks for Weed Detection in Agricultural Robotics. Robotics and Autonomous Systems, 163, 104393. doi:10.1016/j.robot.2023.104393.

Dos Santos Ferreira, J. P., Freitas, D. P., da Silva, A. G., Pistori, H., & Folhes, M. T. (2017). Weed detection in soybean and carrot fields using convolutional neural networks. Computers and Electronics in Agriculture, 143, 314-324. https://doi.org/10.1016/j.compag.2017.11.027

Olsen, A., Hanley, R., Zhang, C., McConchie, R., Knight, C., & Macdonald, B. (2019). DeepWeeds: A multiclass weed species image dataset for deep learning. Frontiers in Plant Science, 10, 1402. https://doi.org/10.3389/fpls.2019.01402

Rußwurm, M., & Körner, M. (2018). Automated weed detection in maize fields with RGB images and deep learning. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285

Kang, L., Zhang, J., Liu, H., & He, Y. (2020). Real-time robust weed detection in the wild. Computers and Electronics in Agriculture, 170, 105252. https://doi.org/10.1016/j.compag.2020.105252

Olsen, J., Hanly, R., Ball, D. A., & Hall, A. (2020). WeedNet: Dense semantic weed classification using multispectral images and MAV for smart farming. Sensors, 20(20), 5784. https://doi.org/10.3390/s20205784

Bhosale, A., Bodkhe, S., Kumar, A., & Patel, S. (2021). Vision Transformers for dense prediction tasks: A study on weed segmentation. IEEE Access, 9, 126523-126534. https://doi.org/10.1109/ACCESS.2021.3111060

Gupta, P., Singh, R., & Kumar, S. (2022). Weed detection in precision agriculture using Vision Transformers. Computers and Electronics in Agriculture, 193, 106591. https://doi.org/10.1016/j.compag.2022.106591

Downloads

Published

31.07.2024

How to Cite

A. Mamatha. (2024). Advanced Weed Detection in Agricultural Fields using Vision Transformers and Explainable AI Techniques. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 2096 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7557

Issue

Section

Research Article