An Advanced Retrieval-Augmented Generative AI Framework for Personalized Student Mental Health Support

Authors

  • Thimmapuram Anuradha, M. Vijay Kumar

Keywords:

Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Student Mental Health Support, Vector Database, AI for Mental Health, Context-Aware AI.

Abstract

This research article presents a Retrieval-Augmented Generation (RAG) framework designed to improve the effectiveness of large language models (LLMs) in supporting student mental health. By combining generative AI with real-time information retrieval, the proposed system delivers accurate, personalized, and context-aware responses tailored to students’ mental health needs. Unlike traditional LLMs that rely solely on pre-trained data, our RAG approach integrates a vector-based search over a domain-specific knowledge base comprising academic literature, therapeutic guidelines, and counseling transcripts. Comparative evaluations with conventional LLMs highlight RAG’s advantages in accuracy, relevance, and user satisfaction. This research work demonstrates how intelligent retrieval combined with generation mechanisms can significantly enhance the delivery of scalable, evidence-based mental health interventions for students.

Downloads

Download data is not yet available.

References

Bruckhaus, T. (2024). RAG Does Not Work for Enterprises. https://doi.org/10.48550/arxiv.2406.04369.

Wang, X., Wang, Z., Gao, X., Zhang, F., Wu, Y., Xu, Z., Shi, T., Wang, Z., Li, S., Qian, Q., Yin, R., Lv, C., Zheng, X., & Huang, X. (2024). Searching for Best Practices in Retrieval-Augmented Generation. https://doi.org/10.48550/arxiv.2407.01219.

Rathod, P. (2024). Efficient Usage of RAG Systems in the World of LLMs. institute of electrical electronics engineers.

https://doi.org/10.36227/techrxiv.171625877.73379410/v1.

Zeng, S., Zhang, J., He, P., Ren, J., Zheng, T., Lu, H., Xu, H., Liu, H., Xing, Y., & Tang, J. (2024). Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data. https://doi.org/10.48550/arxiv.2406.14773.

Chirkova, N., Rau, D., Déjean, H., Formal, T., Clinchant, S., & Nikoulina, V. (2024). Retrieval-augmented generation in multilingual settings. https://doi.org/10.48550/arxiv.2407.01463

Ren, Y., Jin, R., Zhang, T., & Xiong, D. (2024). Do Large Language Models Mirror Cognitive Language Processing? https://doi.org/10.48550/arxiv.2402.18023.

Tigges-Limmer, K., Brocks, Y., Winkler, Y., Stock Gissendanner, S., Morshuis, M., & Gummert, J. F. (2018). Mental health interventions during ventricular assist device therapy: a scoping review. Interactive CardioVascular and Thoracic Surgery, 27(6), 958–964.

https://doi.org/10.1093/icvts/ivy125.

Zeng, S., Zhang, J., He, P., Ren, J., Zheng, T., Lu, H., Xu, H., Liu, H., Xing, Y., & Tang, J. (2024). Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data. https://doi.org/10.48550/arxiv.2406.14773.

Downloads

Published

20.12.2024

How to Cite

Thimmapuram Anuradha. (2024). An Advanced Retrieval-Augmented Generative AI Framework for Personalized Student Mental Health Support. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 3292 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7667

Issue

Section

Research Article