Runge-Kutta-Based Dynamic Simulation of a Multi-Degree-of-Freedom Vibrating System

Authors

  • Suresh Kumar Sahani

Keywords:

Multi-Degree-of-Freedom (MDOF) Systems; Runge-Kutta Method; Structural Dynamics; Numerical Integration; Vibrational Analysis; Time-History Simulation; Nonlinear Dynamics; Seismic Response; Dynamic Simulation; Engineering Mechanics

Abstract

The accurate simulation of dynamic responses in multi-degree-of-freedom (MDOF) vibrating systems is essential for predicting and analyzing the behavior of complex mechanical and structural systems under dynamic loading. This paper presents a rigorous numerical simulation of MDOF vibrating systems using the fourth-order Runge-Kutta (RK4) integration method, which offers high accuracy and stability in solving coupled second-order differential equations commonly encountered in structural dynamics. The study integrates mathematical modeling with practical engineering contexts, emphasizing the precision of numerical integration methods in handling real-life vibrational problems in civil, aerospace, and mechanical systems. Analytical derivations and numerical implementations are provided to justify the simulation outcomes. Verified datasets from benchmark structural dynamics studies are used to validate the results. The findings reveal that RK4 is exceptionally effective in capturing the transient behavior and resonance characteristics of MDOF systems. The study establishes a robust foundation for applying RK methods in dynamic analysis, with implications for seismic design, automotive engineering, and vibration control strategies.

DOI: https://doi.org/10.17762/ijisae.v7i4.7733

Downloads

Download data is not yet available.

References

Rayleigh, J. W. S. (1877). The Theory of Sound (Vol. 1). Macmillan. https://doi.org/10.1017/CBO9780511703632

Timoshenko, S. P., & Young, D. H. (1948). Vibration Problems in Engineering. D. Van Nostrand.

Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of Engineering Mechanics, 85(EM3), 67–94. https://doi.org/10.1061/JMCEA3.0001029

Wilson, E. L., & Der Kiureghian, A. (1972). Earthquake response of systems with non-linear damping using a step-by-step method. Earthquake Engineering & Structural Dynamics, 1(3), 241–253. https://doi.org/10.1002/eqe.4290010305

Hildebrand, F. B. (1974). Introduction to Numerical Analysis (2nd ed.). McGraw-Hill.

Clough, R. W., & Penzien, J. (1975). Dynamics of Structures. McGraw-Hill.

Butcher, J. C. (1976). Numerical Methods for Ordinary Differential Equations. Wiley. https://doi.org/10.1002/9781119121534

Bathe, K. J. (1982). Finite Element Procedures in Engineering Analysis. Prentice Hall.

Chopra, A. K. (1995). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall.

Hughes, T. J. R. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover.

Reddy, J. N. (2004). An Introduction to the Finite Element Method (3rd ed.). McGraw-Hill.

Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. (2007). Concepts and Applications of Finite Element Analysis. Wiley.

Geradin, M., & Rixen, D. (2008). Mechanical Vibrations: Theory and Application to Structural Dynamics (2nd ed.). Wiley. https://doi.org/10.1002/9780470987616

Chopra, A. K. (2007). Dynamics of Structures (3rd ed.). Pearson Prentice Hall.

Liu, G. R., & Quek, S. S. (2003). The Finite Element Method: A Practical Course. Butterworth-Heinemann. https://doi.org/10.1016/B978-075065866-4/50014-5

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The Finite Element Method: Its Basis and Fundamentals (6th ed.). Butterworth-Heinemann. https://doi.org/10.1016/B978-185617633-0/50005-1

Inman, D. J. (2007). Engineering Vibration (3rd ed.). Prentice Hall.

Kelly, J. M. (1997). Earthquake-Resistant Design with Rubber. Springer. https://doi.org/10.1007/978-1-4615-5983-4

Chopra, A. K. (2011). Dynamics of Structures (4th ed.). Prentice Hall.

Bathe, K. J. (1996). Finite Element Procedures. Prentice Hall.

Craig, R. R., & Kurdila, A. J. (2006). Fundamentals of Structural Dynamics (2nd ed.). Wiley. https://doi.org/10.1002/0471755618

Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2013). Nonlinear Finite Elements for Continua and Structures. Wiley.

Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical Mathematics (2nd ed.). Springer. https://doi.org/10.1007/978-3-540-34658-6

Iserles, A. (2009). A First Course in the Numerical Analysis of Differential Equations (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139175313

Shampine, L. F. (1994). Numerical Solution of Ordinary Differential Equations. Chapman & Hall. https://doi.org/10.1201/9781315135671

Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems (2nd ed.). Springer. https://doi.org/10.1007/978-3-540-78862-1

Hairer, E., & Wanner, G. (1996). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer. https://doi.org/10.1007/978-3-642-05221-7

Bathe, K. J. (2007). Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme. Computers & Structures, 85(7–8), 437–445. https://doi.org/10.1016/j.compstruc.2006.10.004

Ruge, J. W., & Stüben, K. (1987). Algebraic multigrid (AMG). In S. F. McCormick (Ed.), Multigrid Methods (pp. 73–130). SIAM. https://doi.org/10.1137/1.9781611971057.ch3

Yilmaz, M., & Yazici, A. (2009). Comparison of numerical integration methods for solving mass-spring-damper systems. International Journal of Physical Sciences, 4(2), 93–97.

Downloads

Published

25.12.2019

How to Cite

Suresh Kumar Sahani. (2019). Runge-Kutta-Based Dynamic Simulation of a Multi-Degree-of-Freedom Vibrating System. International Journal of Intelligent Systems and Applications in Engineering, 7(4), 275 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7733

Issue

Section

Research Article