Mayenite Electride and Nanostructured Magnetite Composites for Microwave Absorption

Authors

  • Anamika Singh, Sunit Sizariya

Keywords:

electronic and communication, 5G technologies, microwave attenuating substances, microwave signals, inorganic electride, modified graphene interfaces, EM response, high-frequency microwave absorption properties, Magnetite nanoparticles

Abstract

The electronic and communication industries are rapidly growing in order to satisfy the demands of contemporary society, thanks to the emergence of 5G technologies including IoT. In this situation, improved microwave attenuating substances are necessary to protect electronics, communication equipment, and biological systems. This paper talks about some important attempts to create advanced materials that may effectively reduce microwave signals. The stable inorganic electride C12A7:e- with modified graphene interfaces (C12A7:e-/MG) offers a high-frequency EM response suitable for effective microwave absorption in the 5G bands. The structure and morphology-derived microwave absorption properties of C12A7:e- can be further improved by modifying the nature of carbon interfaces as it can offer better interfacial polarization and electrical conductivity. Among the class of ferrites, Magnetite has instilled a great interest in material scientists due to its excellent biocompatibility, easy control over size and morphology, and better thermal properties. This study investigates the high-frequency microwave absorption properties of C12A7:e- with highly graphitized carbon interfaces (C12A7:e-@G) and C12A7:e-@G incorporated with Magnetite nanoparticles (NPs) having different sizes and morphology.

Downloads

Download data is not yet available.

References

Anand, S., & Pauline, S. (2021). Effective lightweight, flexible and ultrathin PVDF/rGO/ Ba2Co2Fe12O22 composite films for electromagnetic interference shielding applicatio ns. Nanotechnology, 32(47) 475707. https://doi.org/10.1088/1361-6528/ABED75

Anand, S., Pauline, S., & Prabagar, C. J. (2020). Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polymer Testing, 86. 106504 https://doi.org/10.1016/j.polymertesting.2020.106504

Andrade, R. G. D., Veloso, S. R. S., & Castanheira, E. M. S. (2020). Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. International Journal of Molecular Sciences, 21(7), 2455. https://doi.org/10.3390/ijms21072455

Badreldin, A., Abusrafa, A. E., & Abdel-Wahab, A. (2020). Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review. Emergent Materials, 3(5), 567–590. https://doi.org/10.1007/S42247-020-00123-Z/FIGURES/12

Batool, S. S., Imran, Z., Rasool, K., Ambreen, J., Hassan, S., Arif, S., Ahmad, M., & Rafiq, M. A. (2020). Study of electric conduction mechanisms in bismuth silicate nanofibers. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-59563-6

Cai, M., Yan, H., Li, Y., -, al, Duan, Z., Jiang, Y., Tai -, H., Wang, L., He, Y., Liu, D., Zhang, J., Xue, W., & Chen, X.-Y. (2020). Ti3C2Tx MXenes as thin broadband absorbers. Nanotechnology, 31(27), 275301. https://doi.org/10.1088/1361- 6528/AB80FD

Cheng, H., Lu, Z., Gao, Q., Zuo, Y., Liu, X., Guo, Z., Liu, C., & Shen, C. (2021). PVDF-Ni/PE-CNTs Composite Foams with Co-Continuous Structure for Electromagnetic Interference Shielding and Photo-Electro-Thermal Properties. Engineered Science, 16, 331–340. https://doi.org/10.30919/ES8D518

Cheng, H., Pan, Y., Chen, Q., Che, R., Zheng, G., Liu, C., Shen, C., & Liu, X. (2021). Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Advanced Composites and Hybrid Materials, 4(3), 505–513. https://doi.org/10.1007/S42114-021-00224-1

CHOFORM 5528 Ag/Cu Moisture Cure One Component Form-In-Place Silicone EMI Gasketing | ParkerGB. Retrieved February 20, 2022, from https://ph.parker.com/gb/en/choform-5528-robotically-dispensed-form-in-place-emi- gasketing/19-26-5528-0850

Fatima, H., Lee, D. W., Yun, H. J., & Kim, K. S. (2018). Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Advances, 8(41), 22917–22923. https://doi.org/10.1039/C8RA02909A

Global Market For Emi/Rfi Shielding To Reach Nearly $6 Billion In 2018. Retrieved February 20, 2022, from https://www.bccresearch.com/pressroom/pls/global-market- emi-rfi-shielding-reach-nearly-$6-billion-2018

Goel, S., Tyagi, A., Garg, A., Kumar, S., Baskey, H. B., Gupta, R. K., & Tyagi, S. (2021). Microwave absorption study of composites based on CQD@BaTiO3 core shell and BaFe12O19 nanoparticles. Journal of Alloys and Compounds, 855. https://doi.org/10.1016/J.JALLCOM.2020.157411

Jiao, S., Wu, M., Yu, X., & Zhang, H. (2020). Enhanced Microwave Absorption: The Composite of Fe3O4 Flakes and Reduced Graphene Oxide with Improved Interfacial Polarization. Advanced Engineering Materials, 22(4), 1901299. https://doi.org/10.1002/ADEM.201901299

Jin, L., Wang, J., Wu, F., Yin, Y., & Zhang, B. (2021). MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation. Carbon, 182, 770–780. https://doi.org/10.1016/J.CARBON.2021.06.073

Kazmi, S. J., Nadeem, M., Warsi, M. A., Manzoor, S., Shabbir, B., & Hussain, S. (2022). PVDF/CFO-anchored CNTs ternary composite system with enhanced EMI shielding and EMW absorption properties. Journal of Alloys and Compounds, 903, 163938. https://doi.org/10.1016/J.JALLCOM.2022.163938

Kondawar, S. B., & Modak, P. R. (2020). “Theory of EMI shielding” Materials for Potential EMI Shielding Applications 9–25. Elsevier. https://doi.org/10.1016/b978-0- 12-817590-3.00002-6

Koo, C., Hong, H., Im, P. W., Kim, H., Lee, C., Jin, X., Yan, B., Lee, W., Im, H. J., Paek, S. H., & Piao, Y. (2020). Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3O4 core–shell nanoparticles. Nano Convergence, 7(1), 1–9. https://doi.org/10.1186/S40580-020-00229-4/FIGURES/6

Kruželák, J., Kvasničáková, A., Hložeková, K., & Hudec, I. (2021). Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances, 3(1), 123–172. https://doi.org/10.1039/D0NA00760A

Li, Yang, Qing, Y., Zhao, B., Bai, P., Zhang, R., Yao, H., & Luo, F. (2021). Tunable magnetic coupling and dipole polarization of core-shell Magnéli Ti4O7 ceramic/magnetic metal possessing broadband microwave absorption properties. Ceramics International, 47(23), 33373–33381. https://doi.org/10.1016/J.CERAMINT.2021.08.240

Li, Ye, Li, S., Zhang, T., Shi, L., Liu, S., & Zhao, Y. (2019). 3D hierarchical Co3O4/Reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material. Journal of Alloys and Compounds, 792, 424–431. https://doi.org/10.1016/j.jallcom.2019.03.359

Ma, J., Shu, J., Cao, W., Zhang, M., Wang, X., Yuan, J., & Cao, M. (2019). A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Composites Part B: Engineering, 166, 187–195. https://doi.org/10.1016/j.compositesb.2018.11.119

Ma, Y., Quan, B., Zeng, Z., Zhang, Y., Zhang, L., Wang, Y., & Huang, X. (2021). Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness. Inorganic Chemistry Frontiers, 8(7), 1810–1818. https://doi.org/10.1039/d0qi01486a

Nazir, A. (2020). A review of polyvinylidene fluoride (PVDF), polyurethane (PU), and polyaniline (PANI) composites-based materials for electromagnetic interference shielding:. 0892705720925120. https://doi.org/10.1177/0892705720925120

Pan, J., Guo, H., Wang, M., Yang, H., Hu, H., Liu, P., & Zhu, H. (2020). Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Research, 13(3), 621–629. https://doi.org/10.1007/S12274-020-2656-5

Pang, W., Xue, J., & Pang, H. (2019). A High Energy Density Azobenzene/Graphene Oxide Hybrid with Weak Nonbonding Interactions for Solar Thermal Storage. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-41563-w

Parker Chomerics CHO-FORM 5532 EMI Shielding Material datasheet. Retrieved February 20, 2022, from http://www.lookpolymers.com/polymer_Parker-Chomerics- CHO-FORM-5532-EMI-Shielding-Material.php

Qi, Q., Ma, L., Zhao, B., Wang, S., Liu, X., Lei, Y., & Park, C. B. (2020). An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials and Interfaces, 12(32), 36568–36577. https://doi.org/10.1021/acsami.0c10600

Rajavel, K., Luo, S., Wan, Y., Yu, X., Hu, Y., Zhu, P., Sun, R., & Wong, C. (2020). 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Composites Part A: Applied Science and Manufacturing, 129, 105693. https://doi.org/10.1016/J.COMPOSITESA.2019.105693

Rudradawong, C., Kitiwan, M., Goto, T., & Ruttanapun, C. (2020). Positive ionic conduction of mayenite cement Ca12Al14O33/nano-carbon black composites on dielectric and thermoelectric properties. Materials Today Communications, 22, 100820. https://doi.org/10.1016/j.mtcomm.2019.100820

Shayesteh Zeraati, A., Mende Anjaneyalu, A., Pawar, S. P., Abouelmagd, A., & Sundararaj, U. (2021). Effect of secondary filler properties and geometry on the electrical, dielectric, and electromagnetic interference shielding properties of carbon nanotubes/polyvinylidene fluoride nanocomposites. Polymer Engineering & Science, 61(4), 959–970. https://doi.org/10.1002/PEN.25591

Shu, R., Li, X., Tian, K., & Shi, J. (2022). Fabrication of bimetallic metal-organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers. Composites Part B: Engineering, 228, 109423. https://doi.org/10.1016/J.COMPOSITESB.2021.109423

Soares, B. G., Barra, G. M. O., & Indrusiak, T. (2021). Conducting polymeric composites based on intrinsically conducting polymers as electromagnetic interference shielding/microwave absorbing materials—a review. Journal of Composites Science, 5(7), 173. https://doi.org/10.3390/JCS5070173

Srivastava, S. K., & Manna, K. (2022). Recent Advancements in Electromagnetic Interference Shielding Performance of Nanostructured Materials and their Nanocomposites: A Review. Journal of Materials Chemistry A, 6, 4883–5230. https://doi.org/10.1039/D1TA09522F

Sushmita, K., Formanek, P., Krause, B., Pötschke, P., & Bose, S. (2022). Distribution of Carbon Nanotubes in Polycarbonate-Based Blends for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 5(1), 662–677. https://doi.org/10.1021/acsanm.1c03442

Wanasinghe, D., Aslani, F., Ma, G., & Habibi, D. (2020). Advancements in electromagnetic interference shielding cementitious composites. In Construction and Building Materials, 231, 117116. https://doi.org/10.1016/j.conbuildmat.2019.117116

Wang, C., Ma, Y., Qin, Z., Wang, J., & Zhong, B. (2021). Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance. Applied Surface Science, 569, 150812. https://doi.org/10.1016/J.APSUSC.2021.150812

Wang, X., Huang, J., Feng, H., Li, J., Pu, Z., & Yin, X. (2021). Facile preparation of the dendritic Fe3O4 with a core-shell microstructure in SiO2-B2O3-Al2O3-CaO-Fe2O3 glass-ceramic system for enhanced microwave absorbing performance. Journal of Alloys and Compounds, 877, 160147. https://doi.org/10.1016/J.JALLCOM.2021.160147

Wang, X. X., Ma, T., Shu, J. C., & Cao, M. S. (2018). Confinedly tailoring Fe3O4 clusters- NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chemical Engineering Journal, 332, 321–330. https://doi.org/10.1016/j.cej.2017.09.101

Wang, Yan, Gao, X., Lin, C., Shi, L., Li, X., & Wu, G. (2019). Metal organic frameworks- derived Fe-Co nanoporous carbon/graphene composite as a high- electromagnetic performance wave absorber. Journal of Alloys and Compounds, 785, 765–773. https://doi.org/10.1016/J.JALLCOM.2019.01.271

Wei, H., Cheng, L., & Shchukin, D. (2020). Effect of porous structure on the microwave absorption capacity of soft magnetic connecting network Ni/Al2O3/Ni film. Materials, 13(7), 1764. https://doi.org/10.3390/MA13071764

Wu, W. W., Liu, Y., Zhou, Q., Liu, L. N., Chen, X. M., & Liu, P. (2020). Microwave absorbing properties of FeB/B4C nanowire composite. Ceramics International, 46(3), 4020–4023. https://doi.org/10.1016/J.CERAMINT.2019.10.052

Xu, N., Yan, H., Jiao, X., Jiang, L., Zhang, R., Wang, J., Liu, Z., Liu, Z., Gu, Y., Gang, F., Wang, X., Zhao, L., & Sun, X. (2020). Effect of OH− concentration on Fe3O4 nanoparticle morphologies supported by first principle calculation. Journal of Crystal Growth, 547. https://doi.org/10.1016/J.JCRYSGRO.2020.125780

Ye, X., Chen, Z., Li, M., Wang, T., Wu, C., Zhang, J., Zhou, Q., Liu, H., & Cui, S. (2020). Hollow SiC foam with a double interconnected network for superior microwave absorption ability. Journal of Alloys and Compounds, 817, 153276. https://doi.org/10.1016/J.JALLCOM.2019.153276

Zeng, G., Li, X., Wei, Y., Guo, T., Huang, X., Chen, X., & Tang, X. Z. (2021). Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires. Chemical Engineering Journal, 426, 131745. https://doi.org/10.1016/J.CEJ.2021.131745

Zeng, X., Zhu, L., Yang, B., & Yu, R. (2020). Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors. Materials and Design, 189, 108517. https://doi.org/10.1016/j.matdes.2020.108517

Zhang, D., Zhang, H., Cheng, J., Raza, H., Liu, T., Liu, B., Ba, X., Zheng, G., Chen, G., & Cao, M. (2020). Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- And Ku-bands. Journal of Materials Chemistry C, 8(17), 5923–5933. https://doi.org/10.1039/d0tc00763c

Zhang, H., Zhang, G., Gao, Q., Tang, M., Ma, Z., Qin, J., Wang, M., & Kim, J. K. (2020). Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chemical Engineering Journal, 379. https://doi.org/10.1016/J.CEJ.2019.122304

Zhao, B., Zeng, S., Li, X., Guo, X., Bai, Z., Fan, B., & Zhang, R. (2020). Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 8(2), 500–509. https://doi.org/10.1039/C9TC05462F

Zhou, L., Yan, J., Huang, J., Wang, H., Wang, X., & Wang, Z. (2021). Dielectric and microwave absorption properties of FeSiAl/Al2O3 composites containing FeSiAl particles of different sizes. Ceramics International, 47(6), 7831–7836. https://doi.org/10.1016/J.CERAMINT.2020.11.129

Downloads

Published

10.12.2023

How to Cite

Anamika Singh. (2023). Mayenite Electride and Nanostructured Magnetite Composites for Microwave Absorption. International Journal of Intelligent Systems and Applications in Engineering, 11(11s), 969 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7891

Issue

Section

Research Article