A Comparative Study of Machine Learning Algorithms for Image Recognition in Privacy Protection and Crime Detection

Authors

  • Jambi Ratna Raja Kumar Associate Professor, Computer Engineering department, r, Sr.No.25/1/3, Balewadi, Pune -411045, Genba Sopanrao Moze College of Engineering
  • Dharmesh Dhabliya Professor, Department of Information Technology, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India
  • Sukhvinder Singh Dari Associate Professor, Symbiosis Law School Nagpur,Symbiosis International (Deemed University), Pune -India

Keywords:

Machine learning, image identification, comparative analysis, k-nearest neighbours, random forests, and convolutional neural networks

Abstract

In this work, machine learning techniques for picture recognition are compared. With diverse applications, from object detection to facial recognition, image recognition has emerged as a key area in computer vision. Computers can evaluate and comprehend visual input thanks in large part to machine learning techniques. However, because there are so many possibilities available, choosing the best algorithm for picture recognition jobs can be difficult. The common machine learning methods for picture recognition that will be studied and assessed in this study are convolutional neural networks (CNNs), support vector machines (SVMs), and random forests (RFs). Accuracy, computational effectiveness, and resistance to noise and fluctuations in image quality are some of the criteria used in the evaluation. The results of this study will help researchers and practitioners choose the best machine learning algorithm for their particular applications by revealing the advantages and disadvantages of various image recognition methods.

Downloads

Download data is not yet available.

References

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Caruana, R., Lawrence, S., & Giles, L. (2001). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems, 13, 402-408.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, 144-152.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 248-255.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18-22.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3-4), 197-387.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 1-9.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770-778.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Cireşan, D., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2011). Convolutional neural network committees for handwritten character classification. In Document analysis and recognition (ICDAR), 2011 International conference on (pp. 1135-1139). IEEE.

Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner, B., ... & Cukierski, W. (2013). Challenges in representation learning: A report on three machine learning contests. In International conference on neural information processing (pp. 117-124). Springer.

Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., ... & Wolf, L. (2018). Identifying facial phenotypes of genetic disorders using deep learning. Nature medicine, 24(1), 128-130.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial transformer networks. In Advances in neural information processing systems (pp. 2017-2025).

Russakovsky, O., Deng, J., & Fei-Fei, L. (2017). ImageNet large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).

Xu, J., Zhang, L., Zhang, D., & Zhang, X. (2017). Multi-level wavelet-CNN for image restoration. IEEE transactions on image processing, 26(9), 4279-4292.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Cireşan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3642-3649).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).

Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional networks. In 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 2528-2535).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In International conference on machine learning (pp. 647-655).

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances in neural information processing systems (pp. 1135-1143).

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234-241). Springer.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856).

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, K. (2017). Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3296-3297).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

Howard, A., Geng, G., Li, Y., Heigold, G., Huang, X., Vanhoucke, V., & Ranzato, M. (2019). MobileNetV3: A state-of-the-art lightweight neural network architecture. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 8955-8964).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456).

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856).

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer.

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). Mixup: Beyond empirical risk minimization. In International conference on learning representations.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

Mehta, E. S. ., & Padhi, S. . (2023). Quality and Defect Prediction in Plastic Injection Molding using Machine Learning Algorithms based Gating Systems and Its Mathematical Models. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), 216–230. https://doi.org/10.17762/ijritcc.v11i3s.6183

Natalia Volkova, Machine Learning Approaches for Stock Market Prediction , Machine Learning Applications Conference Proceedings, Vol 2 2022.

Downloads

Published

12.07.2023

How to Cite

Raja Kumar, J. R. ., Dhabliya, D. ., & Dari, S. S. . (2023). A Comparative Study of Machine Learning Algorithms for Image Recognition in Privacy Protection and Crime Detection. International Journal of Intelligent Systems and Applications in Engineering, 11(9s), 482–490. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3185

Issue

Section

Research Article

Most read articles by the same author(s)