Title
Abstract
Abstract
Downloads
References
P. Lv, J. Wang, and H. Wang, “2.5D lightweight RIU-Net for automatic liver and tumor segmentation from CT,” Biomedical Signal Processing and Control, vol. 75, p. 103567, May 2022, doi: 10.1016/j.bspc.2022.103567.
R. Rong et al., “A Deep Learning Approach for Histology-Based Nucleus Segmentation and Tumor Microenvironment Characterization,” Modern Pathology, vol. 36, no. 8, p. 100196, Aug. 2023, doi: 10.1016/j.modpat.2023.100196.
N. N. Prakash, V. Rajesh, D. L. Namakhwa, S. Dwarkanath Pande, and S. H. Ahammad, “A DenseNet CNN-based liver lesion prediction and classification for future medical diagnosis,” Scientific African, vol. 20, p. e01629, Jul. 2023, doi: 10.1016/j.sciaf.2023.e01629.
R. Wu, Y. Xin, J. Qian, and Y. Dong, “A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning,” Biomedical Signal Processing and Control, vol. 80, p. 104407, Feb. 2023, doi: 10.1016/j.bspc.2022.104407.
C. Dong, S. Xu, D. Dai, Y. Zhang, C. Zhang, and Z. Li, “A novel multi-attention, multi-scale 3D deep network for coronary artery segmentation,” Medical Image Analysis, vol. 85, p. 102745, Apr. 2023, doi: 10.1016/j.media.2023.102745.
Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, “A review of deep learning based methods for medical image multi-organ segmentation,” Physica Medica, vol. 85, pp. 107–122, May 2021, doi: 10.1016/j.ejmp.2021.05.003.
H. Jiang et al., “A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation,” Computers in Biology and Medicine, vol. 157, p. 106726, May 2023, doi: 10.1016/j.compbiomed.2023.106726.
P.-H. Conze et al., “Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks,” Artificial Intelligence in Medicine, vol. 117, p. 102109, Jul. 2021, doi: 10.1016/j.artmed.2021.102109.
V. Czipczer and A. Manno-Kovacs, “Adaptable volumetric liver segmentation model for CT images using region-based features and convolutional neural network,” Neurocomputing, vol. 505, pp. 388–401, Sep. 2022, doi: 10.1016/j.neucom.2022.07.024.
S. Liu, H. Wang, Y. Li, X. Li, G. Cao, and W. Cao, “AHU-MultiNet: Adaptive loss balancing based on homoscedastic uncertainty in multi-task medical image segmentation network,” Computers in Biology and Medicine, vol. 150, p. 106157, Nov. 2022.
G. M. Dogar, M. Shahzad, and M. M. Fraz, “Attention augmented distance regression and classification network for nuclei instance segmentation and type classification in histology images,” Biomedical Signal Processing and Control, vol. 79, p. 104199, Jan. 2023, doi: 10.1016/j.bspc.2022.104199.
M. Wang, R. Jin, J. Lu, E. Song, and G. Ma, “Automatic CT liver Couinaud segmentation based on key bifurcation detection with attentive residual hourglass-based cascaded network,” Computers in Biology and Medicine, vol. 144, p. 105363, May 2022.
S. Di, Y. Zhao, M. Liao, Z. Yang, and Y. Zeng, “Automatic liver tumor segmentation from CT images using hierarchical iterative superpixels and local statistical features,” Expert Systems with Applications, vol. 203, p. 117347, Oct. 2022, doi: 10.1016/j.eswa.2022.117347.
J. J. Sáenz-Gamboa, J. Domenech, A. Alonso-Manjarrés, J. A. Gómez, and M. de la Iglesia-Vayá, “Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images,” Artificial Intelligence in Medicine, vol. 140, p. 102559, Jun. 2023.
Y. Ren, D. Zou, W. Xu, X. Zhao, W. Lu, and X. He, “Bimodal segmentation and classification of endoscopic ultrasonography images for solid pancreatic tumor,” Biomedical Signal Processing and Control, vol. 83, p. 104591, May 2023, doi: 10.1016/j.bspc.2023.104591.
H. Gao, M. Lyu, X. Zhao, F. Yang, and X. Bai, “Contour-aware network with class-wise convolutions for 3D abdominal multi-organ segmentation,” Medical Image Analysis, vol. 87, p. 102838, Jul. 2023, doi: 10.1016/j.media.2023.102838.
Reddy, A. P. C., Kumar, M. S., Krishna, B. M., Inthiyaz, S., & Ahammad, S. H. (2019). Physical unclonable function based design for customized digital logic circuit. International Journal of Advanced Science and Technology, 28(8), 206-221.
S. Gul, M. S. Khan, A. Bibi, A. Khandakar, M. A. Ayari, and M. E. H. Chowdhury, “Deep learning techniques for liver and liver tumor segmentation: A review,” Computers in Biology and Medicine, vol. 147, p. 105620, Aug. 2022, doi: 10.1016/j.compbiomed.2022.105620.
X. Zhong, H. Zhang, G. Li, and D. Ji, “Do you need sharpened details? Asking MMDC-Net: Multi-layer multi-scale dilated convolution network for retinal vessel segmentation,” Computers in Biology and Medicine, vol. 150, p. 106198, Nov. 2022, doi: 10.1016/j.compbiomed.2022.106198.
Y. Liu et al., “Double-branch U-Net for multi-scale organ segmentation,” Methods, vol. 205, pp. 220–225, Sep. 2022, doi: 10.1016/j.ymeth.2022.07.002.
V. Nainamalai et al., “Evaluation of clinical applicability of automated liver parenchyma segmentation of multi-center magnetic resonance images,” European Journal of Radiology Open, vol. 9, p. 100448, Jan. 2022, doi: 10.1016/j.ejro.2022.100448.
Rashed, Ahmed Nabih Zaki, SK Hasane Ahammad, Malek G. Daher, Vishal Sorathiya, Abrar Siddique, Sayed Asaduzzaman, Hasin Rehana et al. "Spatial single mode laser source interaction with measured pulse based parabolic index multimode fiber." Journal of Optical Communications.
H. Liu et al., “GCHA-Net: Global context and hybrid attention network for automatic liver segmentation,” Computers in Biology and Medicine, vol. 152, p. 106352, Jan. 2023, doi: 10.1016/j.compbiomed.2022.106352.
Daher, M. G., Trabelsi, Y., Ahmed, N. M., Prajapati, Y. K., Sorathiya, V., Ahammad, S. H., ... & Rashed, A. N. Z. (2022). Detection of basal cancer cells using photodetector based on a novel surface plasmon resonance nanostructure employing perovskite layer with an ultra high sensitivity. Plasmonics, 17(6), 2365-2373.
S. Graham et al., “Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images,” Medical Image Analysis, vol. 58, p. 101563, Dec. 2019, doi: 10.1016/j.media.2019.101563.
M. Byra et al., “Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks,” Ultrasonics, vol. 121, p. 106682, Apr. 2022, doi: 10.1016/j.ultras.2021.106682.
Z. Diao, H. Jiang, and Y. Zhou, “Leverage prior texture information in deep learning-based liver tumor segmentation: A plug-and-play Texture-Based Auto Pseudo Label module,” Computerized Medical Imaging and Graphics, vol. 106, p. 102217, Jun. 2023.
T. Kushnure, S. Tyagi, and S. N. Talbar, “LiM-Net: Lightweight multi-level multiscale network with deep residual learning for automatic liver segmentation in CT images,” Biomedical Signal Processing and Control, vol. 80, p. 104305, Feb. 2023, doi: 10.1016/j.bspc.2022.104305.
H. Haseljić et al., “Liver segmentation using Turbolift learning for CT and cone-beam C-arm perfusion imaging,” Computers in Biology and Medicine, vol. 154, p. 106539, Mar. 2023, doi: 10.1016/j.compbiomed.2023.106539.
Zuhayer, A., Abd-Elnaby, M., Ahammad, S. H., Eid, M. M., Sorathiya, V., & Rashed, A. N. Z. (2022). A Gold-Plated Twin Core D-Formed Photonic Crystal Fiber (PCF) for Ultrahigh Sensitive Applications Based on Surface Plasmon Resonance (SPR) Approach. Plasmonics, 17(5), 2089-2101.
H. Zhang, J. Liu, Z. Yu, and P. Wang, “MASG-GAN: A multi-view attention superpixel-guided generative adversarial network for efficient and simultaneous histopathology image segmentation and classification,” Neurocomputing, vol. 463, pp. 275–291, Nov. 2021, doi: 10.1016/j.neucom.2021.08.039.
Y. Liu, Y. Zhu, Y. Xin, Y. Zhang, D. Yang, and T. Xu, “MESTrans: Multi-scale embedding spatial transformer for medical image segmentation,” Computer Methods and Programs in Biomedicine, vol. 233, p. 107493, May 2023, doi: 10.1016/j.cmpb.2023.107493.
Q. Hao, S. Tian, L. Yu, and J. Wang, “MFUnetr: A transformer-based multi-task learning network for multi-organ segmentation from partially labeled datasets,” Biomedical Signal Processing and Control, vol. 85, p. 105081, Aug. 2023, doi: 10.1016/j.bspc.2023.105081.
D. T. Kushnure and S. N. Talbar, “MS-UNet: A multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images,” Computerized Medical Imaging and Graphics, vol. 89, p. 101885, Apr. 2021, doi: 10.1016/j.compmedimag.2021.101885.
X. Zhang, N. Jia, and Y. Wang, “Multi-input dense convolutional network for classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma,” Biomedical Signal Processing and Control, vol. 80, p. 104226, Feb. 2023, doi: 10.1016/j.bspc.2022.104226.
N. Shen et al., “Multi-organ segmentation network for abdominal CT images based on spatial attention and deformable convolution,” Expert Systems with Applications, vol. 211, p. 118625, Jan. 2023, doi: 10.1016/j.eswa.2022.118625.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.