An Enhancement of the Solar Panel Efficiency: A Comprehensive Review

Authors

  • Akriti Garg, Atul Sarojwal, Mukul Kumar Singh, Mohd. Aslam Ansari, Ashish Kumar Sankhwar

Keywords:

PV-cleaning, Solar Panel, , IoT- real time monitoring, efficiency maintenance, performance parameters.

Abstract

In recent years, solar panels have emerged as one of the most promising non-conventional energy sources for generating clean and sustainable electricity. However, a major limitation lies in the decline of photovoltaic efficiency with rising ambient temperatures. For every 1 °C increase above Standard Test Conditions (STC), the energy output decreases by approximately 0.33%. As a result, the power generated may become insufficient to meet the required load demand. This challenge is particularly critical in applications like standalone electric vehicles, where the available space restricts the installation of additional solar panels to compensate for the reduced output. To overcome this issue, effective cooling solutions are necessary to minimize excess heat and improve performance. Various cooling approaches, categorized into active and passive techniques, have been explored. This paper provides a comprehensive review of different cooling methods aimed at enhancing solar panel efficiency, with particular attention to the integration of thermoelectric generators (TEGs) for further performance improvement.

Downloads

Download data is not yet available.

References

Ahiska, R., Nykyruy, L., Omer, G., and Mateik, G. (2016). The Thermoelectric Solar Panels. jpnu 3 (1), 9–14. doi:10.15330/jpnu.3.1.9-14

Ahmed, A. M., and Hassan Danook, S. (2018). “Efficiency Improvement for Solar Cells Panels by Cooling,” in 2nd International Conference for Engineering, Technology and Sciences of Al-Kitab, ICETS 2018, 39–42. doi:10.1109/ICETS.2018.8724625

Al-Waeli, A. H., Sopian, K., Kazem, H. A., and Chaichan, M. T. (2016). Photovoltaic Solar Thermal (PV/T) Collectors Past, Present and Future: A Review. Int. J. Appl. Eng. Res. 11 (22), 10757–10765.

Amori, K. E., and Abd-AlRaheem, M. A. (2014). Field Study of Various Air Based Photovoltaic/Thermal Hybrid Solar Collectors. Renew. Energy 63, 402–414. doi:10.1016/j.renene.2013.09.047

Arifin, Z., Tjahjana, D. D. D. P., Hadi, S., Rachmanto, R. A., Setyohandoko, G., and Sutanto, B. (2020). Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks. Int. J. Photoenergy 2020, 1–9. doi:10.1155/2020/1574274

Arshad, R., Tariq, S., Niaz, M. U., and Jamil, M. (2014). “Improvement in Solar Panel Efficiency Using Solar Concentration by Simple Mirrors and by Cooling,” in 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering, ICREATE 2014 - Proceedings, 292–295. doi:10.1109/iCREATE.2014.6828382

Awasthi, A., Shukla, A. K., S.R., M. M., Dondariya, C., Shukla, K. N., Porwal, D., et al. (2020). Review on Sun Tracking Technology in Solar PV System. Energy Rep. 6, 392–405. doi:10.1016/j.egyr.2020.02.004

Babu, C., and Ponnambalam, P. (2017). The Role of Thermoelectric Generators in the Hybrid PV/T Systems: A Review. Energy Convers. Manag. 151 (June), 368–385. doi:10.1016/j.enconman.2017.08.060

Ballal, Rajkiran, Lakshmi, P. S., and Kumar, Girish (2015). PV Module, Irradiation, Shading, Fill Factor; PV Module, Irradiation, Shading. Fill Factor 5 (1A), 1–4. doi:10.5923/c.ep.201501.01

Benato, A., Stoppato, A., De Vanna, F., and Schiro, F. (2021). Spraying Cooling System for Pv Modules: Experimental Measurements for Temperature Trends Assessment and System Design Feasibility. Designs 5 (2), 25. doi:10.3390/designs5020025

Besheer, A. H., Smyth, M., Zacharopoulos, A., Mondol, J., Pugsley, A., and Adrian, Pugsley (2016). Review on Recent Approaches for Hybrid PV/T Solar Technology. Int. J. Energy Res. 40 (15), 2038–2053. doi:10.1002/er.3567

Bilal, M., Arbab, M. N., Muhammad Zain Ul, A. A., and Khattak, A. (2016). Increasing the Output Power and Efficiency of Solar Panel by Using Concentrator Photovoltaics (CPV). Int. J. Eng. Works Kambohwell Publ. Enterp. 3 (12), 98–102.

Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., et al. (2017). A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Eng. Sci. Technol. Int. J. 20 (3), 833–858. doi:10.1016/j.jestch.2017.01.009

Chandrasekar, M., Suresh, S., Senthilkumar, T., and Ganesh Karthikeyan, M. (2013). Passive Cooling of Standalone Flat PV Module with Cotton Wick Structures. Energy Convers. Manag. 71, 43–50. doi:10.1016/j.enconman.2013.03.012

Charabi, Y., and Gastli, A. (2013). Integration of Temperature and Dust Effects in Siting Large PV Power Plant in Hot Arid Area. Renew. Energy 57, 635–644. doi:10.1016/j.renene.2013.02.031

Chen, J., Li, K., Liu, C., Li, M., Lv, Y., Jia, L., et al. (2017). Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures. Energies 10 (9), 1329–1415. doi:10.3390/en10091329

Cuce, E., Bali, T., and Sekucoglu, S. A. (2011). Effects of Passive Cooling on Performance of Silicon Photovoltaic Cells. Int. J. Low-Carbon Tech. 6 (4), 299–308. doi:10.1093/ijlct/ctr018

Deen Verma, B., Anurag Gour, A., and Dr. Mukesh Pandey, Dr. (2020). A Review Paper on Solar Tracking System for Photovoltaic Power Plant. Ijert V9 (02), 160–166. doi:10.17577/ijertv9is020103

D. Raut, P., V. Shukla, V., and S.Joshi, S. (2018). Recent Developments in Photovoltaic-Thermoelectric Combined System. Ijet 7 (4), 2619–2627. doi:10.14419/ijet.v7i4.1270910.14419/ijet.v7i2.18.12709

Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., and Kirpichnikova, I. (2020). Advanced Cooling Techniques of P.V. Modules: A State of Art. Case Stud. Therm. Eng. 21 (June), 100674. doi:10.1016/j.csite.2020.100674

Elbreki, A. M., Muftah, A. F., Sopian, K., Jarimi, H., Fazlizan, A., and Ibrahim, A. (2021). Experimental and Economic Analysis of Passive Cooling PV Module Using Fins and Planar Reflector. Case Stud. Therm. Eng. 23 (December 2020), 100801. doi:10.1016/j.csite.2020.100801

Downloads

Published

12.06.2024

How to Cite

Akriti Garg. (2024). An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 5861 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7830

Issue

Section

Research Article