Automated Classification of Gastrointestinal Abnormalities using Convolutional Neural Networks

Authors

  • Soham Navale Artificial Intelligence and Machine Learning Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India.
  • Aditya Anjanikar Artificial Intelligence and Machine Learning Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
  • Akheel Mohammed Artificial Intelligence and Machine Learning Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India.
  • Sairam V. A. Artificial Intelligence and Machine Learning Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India.
  • Shilpa Gite Symbiosis Centre for Applied AI, Symbiosis International (Deemed University), Pune, India.
  • Smita Mahajan Symbiosis Centre for Applied AI, Symbiosis International (Deemed University), Pune, India.
  • Nandhini K. Symbiosis Centre for Applied AI, Symbiosis International (Deemed University), Pune, India.

Keywords:

Deep learning, Convolutional neural networks (CNNs), Capsule endoscopy, Pre-trained Modes, Gastrointestinal abnormalities

Abstract

With the use of a tiny, ingestible capsule fitted with a camera, a cutting-edge medical imaging technology called capsule endoscopy, high-resolution images of the digestive system can be obtained. By allowing for non-invasive digestion system viewing, this technique has revolutionized the diagnosis and monitoring of gastrointestinal illnesses. This paper is focused on the creation of sophisticated picture classification algorithms to increase the clinical value of capsule endoscopy. Five distinct CNN models were used in the study: DenseNet121, EfficientNetB4, EfficientNetV2B3, ResNet101, and InceptionV3. Out of all the models, the DenseNet121 model performed the best, showing higher accuracy, AUC, precision, and recall. Its accuracy was 94.93%, recall was 93.87%, precision was 96.c9%, and AUC was 99.79%. =

Downloads

Download data is not yet available.

References

Kiourti, A., Psathas, K.A. and Nikita, K.S., 2014. Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges. Bioelectromagnetics, 35(1), pp.a-15.

Wang, G.B., Xuan, X.W., Jiang, D.L., Li, K. and Wang, W., 2022. A miniaturized implantable antenna sensor for wireless capsule endoscopy system. AEU-International Journal of Electronics and Communications, 143, p.a54022.

Iddan, G., Meron, G., Glukhovsky, A. and Swain, P., 2000. Wireless capsule endoscopy. Nature, 405(6785), pp.d17- 417.

Fonseca, F., Nunes, B., Salgado, M. and Cunha, A., 2022. Abnormality classification in small datasets of capsule endoscopy images. Procedia Computer Science, 196, pp.d69-476.

B. Kieffer, M. Babaie, S. Kalra and H. R. Tizhoosh, "Convolutional neural networks for histopathology image classification: Training vs. Using pre-trained networks," 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 2017, pp. 1-6, doi: 10.a109/IPTA.b017.8310149.

Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M. and Xie, W., 2018. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), p.b0170387.

Costamagna, G., Shah, S.K., Riccioni, M.E., Foschia, F., Mutignani, M., Perri, V., Vecchioli, A., Brizi, M.G., Picciocchi, A. and Marano, P., 2002. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology, 123(4), pp.999-1005.

Namikawa, K., Hirasawa, T., Yoshio, T., Fujisaki, J., Ozawa, T., Ishihara, S., Aoki, T., Yamada, A., Koike, K., Suzuki, H. and Tada, T., 2020. Utilizing artificial intelligence in endoscopy: a clinician’s guide. Expert review of gastroenterology & hepatology, 14(8), pp.689- 706.

Zonderman, J. and Vender, R.S., 2009. Understanding Crohn disease and ulcerative colitis. Univ. Press of Mississippi.

Haycock, A., Cohen, J., Saunders, B.P., Cotton, P.B. and Williams, C.B., 2014. Cotton and Williams' practical gastrointestinal endoscopy: the fundamentals. John Wiley & Sons.

De'Angelis, G.L., Fornaroli, F., De'Angelis, N., Magiteri, B. and Bizzarri, B., 2007. Wireless capsule endoscopy for pediatric small-bowel diseases. Official journal of the American College of Gastroenterology| ACG, 102(8), pp.a749-1757.

Wahab, H., Mehmood, I., Ugail, H., Sangaiah, A.K. and Muhammad, K., 2023. Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities. Future Generation Computer Systems.

M. R. Neuman et al., "Advances in Medical Devices and Medical Electronics," in Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1537-1550, 13 May 2012, doi: 10.a109/JPROC.b012.b190684.

Di Nardo, G., Esposito, G., Ziparo, C., Micheli, F., Masoni, L., Villa, M.P., Parisi, P., Manca, M.B., Baccini, F. and Corleto, V.D., 2020. Enteroscopy in children and adults with inflammatory bowel disease. World Journal of Gastroenterology, 26(39), p.5944.

Luo, X., Zhang, J., Li, Z. and Yang, R., 2022. Diagnosis of ulcerative colitis from endoscopic images based on deep learning. Biomedical Signal Processing and Control, 73, p.a03443.

Souaidi, M., Lafraxo, S., Kerkaou, Z., El Ansari, M. and Koutti, L., 2023. A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector. Diagnostics, 13(4), p.733.

Zhou, T., Ye, X., Lu, H., Zheng, X., Qiu, S. and Liu, Y., 2022. Dense convolutional network and its application in medical image analysis. BioMed Research International, 2022.

Rahim, T., Usman, M.A. and Shin, S.Y., 2020. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging. Computerized Medical Imaging and Graphics, 85, p.a01767.

Wang, S., He, Q., Zhang, P., Chen, X. and Zuo, S., 2022. Toward Automatic Detection of Gastric Lesion for Upper Gastrointestinal Endoscopy with Neural Network. Journal of Medical Robotics Research, 7(01), p.b141003.

Khan, M.A., Majid, A., Hussain, N., Alhaisoni, M., Zhang, Y.D., Kadry, S. and Nam, Y., 2021. Multiclass stomach diseases classification using deep learning features optimization.

Mackiewicz, M., Berens, J. and Fisher, M., 2008. Wireless capsule endoscopy color video segmentation. IEEE Transactions on Medical Imaging, 27(12), pp.a769-1781.

Vajravelu, A., Selvan, K.S., Jamil, M.M.B.A., Jude, A. and Diez, I.D.L.T., 2023. Machine learning techniques to detect bleeding frame and area in wireless capsule endoscopy video. Journal of Intelligent & Fuzzy Systems, 44(1), pp.c53-364.

Afonso, J., Mascarenhas, M., Ribeiro, T., Cardoso, H., Andrade, P., Ferreira, J.P., Saraiva, M.M. and Macedo, G., 2022. Deep Learning for Automatic Identification and Characterization of the Bleeding Potential of Enteric Protruding Lesions in Capsule Endoscopy. Gastro Hep Advances, 1(5), pp.835-843.

Houdeville, C., Souchaud, M., Leenhardt, R., Beaumont, H., Benamouzig, R., McAlindon, M., Grimbert, S., Lamarque, D., Makins, R., Saurin, J.C. and Histace, A., 2021. A multisystem-compatible deep learning-based algorithm for detection and characterization of angiectasis in small-bowel capsule endoscopy. A proof-of-concept study. Digestive and Liver Disease, 53(12), pp.a627-1631.

Vani, V. and Prashanth, K.M., 2022. Ulcer detection in Wireless Capsule Endoscopy images using deep CNN. Journal of King Saud University-Computer and Information Sciences, 34(6), pp.c319-3331.

Ghosh, T. and Chakareski, J., 2021. Deep transfer learning for automated intestinal bleeding detection in capsule endoscopy imaging. Journal of Digital Imaging, 34, pp.d04-417.

Ellahyani, A., Jaafari, I.E., Charfi, S. and Ansari, M.E., 2021. Detection of abnormalities in wireless capsule endoscopy based on extreme learning machine. Signal, Image and Video Processing, 15, pp.877-884.

Xiao, Z. and Feng, L.N., 2020. A study on wireless capsule endoscopy for small intestinal lesions detection based on deep learning target detection. IEEE Access, 8, pp.a59017- 159026.

Sohag, M.H.A., 2020. Detection of intestinal bleeding in wireless capsule endoscopy using machine learning techniques (Doctoral dissertation, University of Saskatchewan).

Al Mamun, A., Em, P.P., Ghosh, T., Hossain, M.M., Hasan, M.G. and Sadeque, M.G., 2021. Bleeding recognition technique in wireless capsule endoscopy images using fuzzy logic and principal component analysis. International Journal of Electrical and Computer Engineering (IJECE), 11(3), pp.b688-2695.

Sharif, M., Attique Khan, M., Rashid, M., Yasmin, M., Afza, F. and Tanik, U.J., 2021. Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. Journal of Experimental & Theoretical Artificial Intelligence, 33(4), pp.577-599.

Laiz, P., Vitrià, J., Gilabert, P., Wenzek, H., Malagelada, C., Watson, A.J. and Seguí, S., 2023. Anatomical landmarks localization for capsule endoscopy studies. Computerized Medical Imaging and Graphics, 108, p.a02243.

Sharma, A., Kumar, R. and Garg, P., 2023. Deep learning- based prediction model for diagnosing gastrointestinal diseases using endoscopy images. International Journal of Medical Informatics, 177, p.a05142.

Laiz, P., Vitrià, J., Gilabert, P., Wenzek, H., Malagelada, C., Watson, A.J. and Seguí, S., 2023. Anatomical landmarks localization for capsule endoscopy studies. Computerized Medical Imaging and Graphics, 108, p.a02243.

Sharma, A., Kumar, R. and Garg, P., 2023. Deep learning- based prediction model for diagnosing gastrointestinal diseases using endoscopy images. International Journal of Medical Informatics, 177, p.a05142.

Sadagopan, R., Ravi, S., Adithya, S.V. and Vivekanandhan, S., 2023. PolyEffNetV1: A CNN based colorectal polyp detection in colonoscopy images. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 237(3), pp.406-418.

Bekkanti, A., Ganesan, S. and Satyala, N., 2023.DETECTION AND SEGMENTATION OF COLORECTAL POLYPS IN GASTROINTESTINAL COLONOSCOPY IMAGES USING MASK R-CNN FRAMEWORK. Journal of Data Acquisition and Processing, 38(2), p.1442.

P. Shukla, R. Aluvalu, S. Gite and U. Maheswari, Computer Vision: Applications of Visual AI and Image Processing. Vol. 15. 2023: Walter de Gruyter GmbH & Co KG.

Deshpande, N. M., Gite, S., Pradhan, B., Assiri, M. E. (2022). Explainable Artificial Intelligence–A New Step towards the Trust in Medical Diagnosis with AI Frameworks: A Review. CMES-Computer Modeling in Engineering & Sciences, 133(3), 843–872.

Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri. Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093

Gite, S., Mishra, A. & Kotecha, K. Enhanced lung image segmentation using deep learning. Neural Comput & Applic 35, 22839–22853 (2023). https://doi.org/10.1007/s00521-021-06719-8

Mishra, A.; Dharahas, G.; Gite, S.; Kotecha, K.; Koundal, D.; Zaguia, A.; Kaur, M.; Lee, H.-N. ECG Data Analysis with Denoising Approach and Customized CNNs. Sensors 2022, 22, 1928. https://doi.org/10.3390/s2205.

Tripathi, R.C., Gupta, P., Anand, R., Jayashankar, R.J., Mohanty, A., Michael, G., Dhabliya, D. Application of information technology law in India on IoT/IoE with image processing (2023) Handbook of Research on Thrust Technologies? Effect on Image Processing, pp. 135-150.

Downloads

Published

12.01.2024

How to Cite

Navale, S. ., Anjanikar , A. ., Mohammed, A. ., V. A. , S. ., Gite, S. ., Mahajan , S. ., & K., N. . (2024). Automated Classification of Gastrointestinal Abnormalities using Convolutional Neural Networks. International Journal of Intelligent Systems and Applications in Engineering, 12(12s), 348–360. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4521

Issue

Section

Research Article

Most read articles by the same author(s)