Leveraging Natural Language Processing in Electronic Health Records for Enhanced Healthcare Decision-Making: A Systematic Review
Keywords:
Medical NLP, Machine Learning, Electronic Health Records, Artificial IntelligenceAbstract
These Natural language processing (NLP) is frequently used in Electronic Health Records (EHRs) to extract clinical insights; nevertheless, issues with automated tools, annotated data, and other constraints prevent NLP from being fully exploited for EHRs. To comprehend these limitations and investigate novel prospects, this research compares and analyzes different Machine Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP) methodologies. The work covers seven main areas: classifying medical notes, recognizing clinical terms, summarizing texts, developing advanced AI models, extracting important information, translating medical language, and applying NLP to various other healthcare tasks— We looked through 261 articles from 11 databases in a systematic review and selected 127 of them for a detailed reading. Three novel goals are combined in this study: a handwritten prescription interpretation system based on GPT-3, multilingual clinical note extraction using BERT variations, and PRISMA-compliant label extraction from radiology reports using Vision Transformers. The findings show that the majority of data in electronic health records are unstructured, and that the most popular uses of machine learning and deep learning approaches are prediction and categorization. ICD-9 categorization, clinical note analysis, and named entity identification are some of the major use cases. The results of our suggested systems were encouraging: the BERT variations handled multilingual clinical notes efficiently, the GPT-3 system transcribed handwritten prescriptions properly, and the Vision Transformers increased the radiological report label extraction efficiency.
Downloads
References
M.R. Cowie, J.I. Blomster, L.H. Curtis, S. Duclaux, I.Ford, F.Fritz, S. Goldman, S. Janmohamed, J.Kreuzer, M. Leenay, et al., Electronic Health records to facilitate clinical research, Clin. Res. Cardiol. 106 (1) (2017) 1-9, http://dx.doi/10.1007/s00392-016-1025-6.
H. Consultant, Why unstructured data holds the key to intelligent healthcare systems [Internet], 2015, Atlanta (GA): HIT Consultant URL https://hitconsultant.net/2015/03/31/tapping-unstructured-data-healthcares biggest-hurdle-realized/.
J. Liang, Y. Li, Z. Zhang, D. Shen, J. Xu, X. Zheng, T. Wang, B. Tang, J. Lei, J. Zhang, Adoption of electronic health records (EHRs) in China during the past 10 years: Consecutive survey data analysis and comparison of Sino-American challenges and experiences, J. Med. Internet Res. 23 (2) (2021) e24813–e,http://dx.doi.org/10.2196/24813.
A. Hodgkins, J. Mullan, D. Mayne, C. Boyages, A. Bonney, Australian general practitioners’ attitudes to the extraction of research data from electronic health records, Aust. J. Gen. Prac. 49 (3) (2020) 145–150, http://dx.doi.org/10.31128/ AJGP-07-19-5024.
K. Cairns, M. Rawlins, S. Unwin, F. Doukas, R. Burke, E. Tong, A. Henderson, A.C. Cheng, Building on antimicrobial stewardship programs through integration with electronic medical records: The
Australian experience, Infect. Dis. Ther. 10 (1) (2021) 61–73, http://dx.doi.org/10.1007/s40121-020-00392-5.
U. Naseem, M. Khushi, S.K. Khan, K. Shaukat, M.A. Moni, A comparative analysis of active learning for biomedical text mining, Appl. Syst. Innov. 4(1) (2021) 23, http://dx.doi.org/10.3390/asi4010023.
Y.H. Bhosale, K.S. Patnaik, Application of deep learning techniques in diagnosis of COVID-19 (Coronavirus): A systematic review, Neural Process. Lett. (2022) 1–53, URL https://link.springer.com/article/10.1007/s11063-022-11023-0.
Y.H. Bhosale, K.S. Patnaik, IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using RaspberryPi, in: 2022 International Conference on IoT and Blockchain Technology, ICIBT, IEEE, 2022, pp. 1–6, URL https://ieeexplore.ieee.org/document/9807725.
A.L. Beam, I.S. Kohane, Big data and machine learning in health care, JAMA 319 (13) (2018) 1317–1318, URL https://jamanetwork.com/journals/jama/ article-abstract/2675024.
Y.H. Bhosale, S. Zanwar, Z. Ahmed, M. Nakrani, D. Bhuyar, U. Shinde, Deep convolutional neural network based COVID-19 classification from radiology XRay images for IoT enabled devices, in: 2022 8th International Conference on Advanced Computing and Communication Systems, Vol. 1, ICACCS, IEEE, 2022, pp. 1398–1402, URL https://ieeexplore.ieee.org/document/9785113.
A.F. Leite, K.d.F. Vasconcelos, H. Willems, R. Jacobs, Radiomics and machine learning in oral healthcare, PROTEOMICS–Clin. Appl. 14 (3) (2020) 1900040, URL https://onlinelibrary.wiley.com/doi/full/10.1002/prca.201900040.
A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, J. Dean, A guide to deep learning in healthcare, Nat. Med. 25 (1) (2019) 24–29, http://dx.doi.org/10.1038/s41591-018-0316-z.
M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine learning, Adv. Neural Inf. Process. Syst. 28 (2015) URL https://proceedings.neurips.cc/paper/2015/file/ 11d0e6287202fced83f79975ec59a3a6-Paper.pdf.
J. Waring, C. Lindvall, R. Umeton, Automated machine learning: Review of the state-of-the-art and opportunities for healthcare, Artif. Intell. Med. 104 (2020) 101822, http://dx.doi.org/10.1016/j.artmed.2020.101822.
A.A. Borkowski, C.P. Wilson, S.A. Borkowski, L.B. Thomas, L.A. Deland, S.J. Grewe, S.M. Mastorides, Google AutoML versus Apple CreateML for histopathologic cancer diagnosis; which algorithms are better? 2019, arXiv preprint arXiv:1903.08057. http://dx.doi.org/10.48550/arXiv.1903.08057.
A. Choudhary, A. Choudhary, S. Suman, NLP applications for big data analytics within healthcare, in: S. Mishra, H. Tripathy, P. Mallick, K. Shaalan (Eds.), Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, Springer, Singapore, 2022, pp. 237–257, http://dx.doi.org/10.1007/978-98119-1076-0_13.
B. Ulrich, C. Grady, G. Demiris, T. Richmond, The competing Hum. Res. 4 (1) (2021) 25–31, http://dx.doi.org/10.1002/eahr.500076.
N. Afzal, V.P. Mallipeddi, S. Sohn, H. Liu, R. Chaudhry, C.G. Scott, I.J. Kullo, A.M. Arruda-Olson, Natural language processing of clinical notes for identification of critical limb ischemia, Int. J. Med. Inform.111 (2018) 83- 89http://dx.doi.org/10.1016/j.ijmedinf.2017.12.024.
B. Galatzan, J. Carrington, S. Gephart, Testing the use of natural language processing software and content analysis to analyze nursing hand-off text data, Comput. Inform. Nurs. 39 (8) (2021) 411–417, http://dx.doi.org/10.1097/CIN. 0000000000000732.
T. Tyagi, NeuraHealthNLP: An automated screening pipeline to detect undiagnosed cognitive impairment in electronic health records with deep learning and natural language processing, 2022, arXiv preprint arXiv:2202.00478. http: //dx.doi.org/10.48550/arXiv.2202.00478.
M. Chowdhury, E.G. Cervantes, W.-Y. Chan, D.P. Seitz, Use of machine learning and artificial intelligence methods in geriatric mental health research involving electronic health record or administrative claims data: A systematic review, Front. Psychiatry 12 (2021) http://dx.doi.org/10.3389/fpsyt.2021.738466.
Y. Juhn, H. Liu, Artificial intelligence approaches using natural language processing to advance EHR-based clinical research, J. Allergy Clin. Immunol. 145 (2) (2020) 463–469.
T. Ahmed, M.M.A. Aziz, N. Mohammed, De-identification of electronic health record using neural network, Sci. Rep. 10 (1) (2020) 1–11, http://dx.doi.org/ 10.1038/s41598-020-75544-1.
S. Wu, K. Roberts, S. Datta, J. Du, Z. Ji, Y. Si, S. Soni, Q. Wang, Q. Wei, Y. Xiang, H. Xu, Deep learning in clinical natural language processing: a methodical review, J. Am. Med. Inform. Assoc. 27 (3) (2020) 457–470, http: //dx.doi.org/10.1093/jamia/ocz200.
H. Alzoubi, R. Alzubi, N. Ramzan, D. West, T. Al-Hadhrami, M. Alazab, A review of automatic phenotyping approaches using electronic health records, Electronics 8 (11) (2019) 1235, http://dx.doi.org/10.3390/electronics8111235.
Y. Juhn, H. Liu, Natural language processing to advance EHR-based clinical research in Allergy, Asthma, and Immunology, J. Allergy Clin. Immunol. 145 (2019) http://dx.doi.org/10.1016/j.jaci.2019.12.897.
T.A. Koleck, C. Dreisbach, P.E. Bourne, S. Bakken, Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review, J. Am. Med. Inform. Assoc. 26 (4) (2019) 364–379, http://dx.doi.org/10.1093/jamia/ocy173.
Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu, Y. Zeng, S. Mehrabi, S. Sohn, et al., Clinical information extraction applications: a literature review, J. Biomed. Inform. 77 (2018) 34–49, http://dx.doi.org/10.1016/j.jbi.2017.11.011.
Y. Luo, W.K. Thompson, T.M. Herr, Z. Zeng, M.A. Berendsen, S.R. Jonnalagadda, M.B. Carson, J. Starren, Natural language processing for EHR-based pharmacovigilance: a structured review, Drug Saf. 40 (11) (2017)1075–1089, http://dx.doi.org/10.1007/s40264-017-0558-6.
A.K. Jabali, A. Waris, D.I. Khan, S. Ahmed, R.J. Hourani, Electronic health records: Three decades of bibliometric research productivity analysis and some insights, Inform. Med. Unlocked (2022) 100872, http://dx.doi.org/10.1016/j. imu.2022.100872.
K. Ayre, H.G. Gordon, R. Dutta, J. Hodsoll, L.M. Howard, The prevalence and correlates of self-harm in the perinatal period: a systematic review, J. Clin. Psychiatry 81 (1) (2019) 15343, http://dx.doi.org/10.4088/JCP.19r12773.
A. Bittar, S. Velupillai, A. Roberts, R. Dutta, Text classification to inform suicide risk assessment in electronic health records, in: MedInfo, 2019, pp. 40–44, http://dx.doi.org/10.3233/SHTI190179.
J. Downs, S. Velupillai, G. George, R. Holden, M. Kikoler, H. Dean, A. Fernandes, R. Dutta, Detection of suicidality in adolescents with autism spectrum disorders: developing a natural language processing approach for use in electronic health records, in: AMIA Annual Symposium Proceedings, Vol. 2017, American Medical Informatics Association, 2017, p. 641, URL https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC5977628/.
H.D. Anderson, W.D. Pace, E. Brandt, R.D. Nielsen, R.R. Allen, A.M. Libby, D.R. West, R.J. Valuck, Monitoring suicidal patients in primary care using electronic health records, J. Am. Board Fam. Med. 28 (1) (2015) 65–71, URL https://www.jabfm.org/content/28/1/65.
K. Ayre, A. Bittar, J. Kam, S. Verma, L.M. Howard, R. Dutta, Developing a natural language processing tool to identify perinatal self-harm in electronic healthcare records, PLoS One 16 (8) (2021) e0253809, http://dx.doi.org/10. 1371/journal.pone.0253809.
B.E. Belsher, D.J. Smolenski, L.D. Pruitt, N.E. Bush, E.H. Beech, D.E. Workman, R.L. Morgan, D.P. Evatt, J. Tucker, N.A. Skopp, Prediction models for suicide attempts and deaths: a systematic review and simulation, JAMA Psychiatry 76 (6) (2019) 642–651, http://dx.doi.org/10.1001/jamapsychiatry.2019.0174.
G.E. Simon, E. Johnson, J.M. Lawrence, R.C. Rossom, B. Ahmedani,
F.L. Lynch, A. Beck, B. Waitzfelder, R. Ziebell, R.B. Penfold, et al., Predicting suicide attempts and suicide deaths following outpatient visits using electronic health records, Am. J. Psychiatry 175 (10) (2018) 951–960, http://dx.doi.org/10. 1176/appi.ajp.2018.17101167.
C.G. Walsh, J.D. Ribeiro, J.C. Franklin, Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning, J. Child Psychol. Psychiatry 59 (12) (2018) 1261–1270, http://dx.doi.org/10.1111/jcpp.12916.
F.R. Tsui, L. Shi, V. Ruiz, N.D. Ryan, C. Biernesser, S. Iyengar, C.G. Walsh, D.A. Brent, Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts, JAMIA Open 4 (1) (2021) ooab011, http://dx.doi.org/10.1093/jamiaopen/ooab011.
N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records, PLoS One 14 (2) (2019) e0211116, http://dx.doi.org/10.1371/ journal.pone.0211116.
G.K. Savova, J.J. Masanz, P.V. Ogren, J. Zheng, S. Sohn, K.C. Kipper-Schuler, C.G. Chute, Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications, J. Am. Med.Inform. Assoc. 17 (5) (2010) 507–513, http://dx.doi.org/10.1136/jamia.2009. 001560.
D.J. Feller, J. Zucker, M.T. Yin, P. Gordon, N. Elhadad, Using clinical notes and natural language processing for automated HIV risk assessment, J. Acquir. Immune Defic. Syndr. (1999) 77 (2) (2018) 160, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762388/.
S. Fu, G.S. Lopes, S.R. Pagali, B. Thorsteinsdottir, N.K. LeBrasseur, A. Wen, H. Liu, W.A. Rocca, J.E. Olson, J. St. Sauver, et al., Ascertainment of delirium status using natural language processing from electronic health records, J. Gerontol. Ser. A 77 (3) (2022) 524–530, http://dx.doi.org/10.1093/gerona/ glaa275.
Y. Deng, J.A. Pacheco, A. Chung, C. Mao, J.C. Smith, J. Zhao, W.-Q. Wei, A. Barnado, C. Weng, C. Liu, et al., Natural language processing to identify lupus nephritis phenotype in electronic health records, 2021, arXiv preprint arXiv:2112.10821. http://dx.doi.org/10.48550/arXiv.2112.10821.
M. Li, Z. Fei, M. Zeng, F.-X. Wu, Y. Li, Y. Pan, J. Wang, Automated ICD-9 coding via a deep learning approach, IEEE/ACM Trans. Comput. Biol. Bioinform. 16 (4) (2018) 1193–1202, http://dx.doi.org/10.1109/TCBB.2018.2817488.
A. Kormilitzin, N. Vaci, Q. Liu, A. Nevado-Holgado, Med7: a transferable clinical natural language processing model for electronic health records, Artif. Intell. Med. 118 (2021) 102086, http://dx.doi.org/10.1016/j.artmed.2021.102086.
S. Bird, E. Klein, E. Loper, Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit, O’Reilly Media, Inc, 2009, URL https://www.amazon.com/Natural-Language- Processing-PythonAnalyzing/dp/0596516495.
C.D. Manning, M. Surdeanu, J. Bauer, J.R. Finkel, S. Bethard, D. McClosky,The Stanford CoreNLP natural language processing toolkit, in: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2014, pp. 55–60, URL https://aclanthology.org/P14-5010.pdf. [49] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Transformers: State-of-the-art natural language processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2020, pp. 38–45, http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.