A Systematic and Comprehensive Review of Literature on Security Threats, Mitigation Strategies and Optimization Techniques in Cloud Computing

Authors

  • Ajay N, Mohan H S, Shrihari M R, Vikas Reddy S, Santhosh Kumar M, Shwetha B V

Keywords:

Cloud Computing, Load Balancing, Optimization, Cyber Security, Access Control

Abstract

This paper presents a survey evaluating known vulnerabilities, identifying threats, and discussing cloud security requirements. It delves into the significance of resource optimization and recent security advancements in the realm of cloud computing. The primary objective of this research is to explore various facets of cloud computing, with a specific focus on privacy and security concerns. It scrutinizes security vulnerabilities within cloud services while evaluating existing standard cyber security solutions. Furthermore, the study seeks to comprehend the security risks encountered by cloud users, data owners, and service providers. Additionally, it underscores the importance of optimizing cloud resources and review standard load balancing techniques. Various comparative analysis are drawn for thorough inspection of issues and solutions.

Downloads

Download data is not yet available.

References

According to a New IDC Forecast. The Growth in Connected IoT Devices Is Expected to Generate 79.4 ZB of Data in 2025. Accessed: Mar. 1, 2020. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Y.-Y. Teing, A. Dehghantanha, K.-K.-R. Choo, and L. T. Yang, ‘‘Forensic investigation of P2P cloud storage services and backbone for IoT networks: BitTorrent sync as a case study,’’ Comput. Electr. Eng., vol. 58, pp. 350–363, Feb. 2017.

B. Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” CoRR, vol. abs/1707.07452, 2017.

T. Vasiljeva, S. Shaikhulina, and K. Kreslins, “Cloud computing: business perspectives, benefits and challenges for small and medium enterprises (case of latvia),” Procedia Engineering, vol. 178, pp. 443–451, 2017.

S. Becker, G. Brataas, M. Cecowski, D. Huljenic, S. Lehrig, and I. Stupar, “Introduction,” in Engineering Scalable, Elastic, and Cost-Efficient Cloud Computing Applications - The CloudScale Method, S. Becker, G. Brataas, and S. Lehrig, Eds. Springer, 2017, pp. 3–21.

J. Weinman, “The economics of pay-per-use pricing,” IEEE Cloud Comput., vol. 5, no. 5, p. 101, 2018.

M. Bahrami and M. Singhal, “DCCSOA: A dynamic cloud computing service-oriented architecture,” in 2015 IEEE International Conference on Information Reuse and Integration, IRI 2015, San Francisco, CA, USA, August 13-15, 2015. IEEE Computer Society, 2015, pp. 158–165

Gartner: Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. Accessed: Feb. 2020. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecastsworldwide-public-cloud-revenue-to-grow-17-percent-in-2020

Parast, F. K., Sindhav, C., Nikam, S., Yekta, H. I., Kent, K. B., & Hakak, S. (2022). Cloud computing security: A survey of service-based models. Computers & Security, 114, 102580.

Barrowclough, J. P., & Asif, R. (2018). Securing cloud hypervisors: a survey of the threats, vulnerabilities, and countermeasures. Security and Communication Networks, 2018, 1-20.

Mansouri, Y., & Babar, M. A. (2021). A review of edge computing: Features and resource virtualization. Journal of Parallel and Distributed Computing, 150, 155-183.

Nemati, H., Azhari, S. V., Shakeri, M., & Dagenais, M. (2021). Host-based virtual machine workload characterization using hypervisor trace mining. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 6(1), 1-25.

Rahman, A., & Subriadi, A. P. (2022, January). Software as a service (SaaS) adoption factors: individual and organizational perspective. In 2022 2nd International Conference on Information Technology and Education (ICIT&E) (pp. 31-36). IEEE.

Isharufe, W., Jaafar, F., & Butakov, S. (2020, June). Study of security issues in platform-as-a-service (PaaS) cloud model. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.

[15] Nazarov, A. N., Koupaei, A. N. A., Dhoot, A., Azlan, A., & Siadat, S. M. R. (2020, March). Mathematical modelling of infrastructure as a service. In 2020 Systems of Signals Generating and Processing in the Field of on Board Communications (pp. 1-6). IEEE.

Saxena, S., Yagyasen, D., Saranya, C. N., Boddu, R. S. K., Sharma, A. K., & Gupta, S. K. (2021, October). Hybrid Cloud Computing for Data Security System. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA) (pp. 1-8). IEEE.

Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M. A. (2021). A load balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access, 9, 41731-41744.

Pinedo, M. L. (2012). Scheduling, Chapter 7.

Murad, S. A., Muzahid, A. J. M., Azmi, Z. R. M., Hoque, M. I., & Kowsher, M. (2022). A review on job scheduling technique in cloud computing and priority rule based intelligent framework. Journal of King Saud University-Computer and Information Sciences, 34(6), 2309-2331.

Aktan, M. N., & Bulut, H. (2022). Metaheuristic task scheduling algorithms for cloud computing environments. Concurrency and Computation: Practice and Experience, 34(9), e6513.

Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W., Alyami, H., & Ayaz, M. (2021). A systematic literature review on cloud computing security: threats and mitigation strategies. IEEE Access, 9, 57792-57807.

Fathalla, A., Li, K., & Salah, A. (2022). Best-KFF: a multi-objective preemptive resource allocation policy for cloud computing systems. Cluster Computing, 25(1), 321-336.

Kumar, S. M., Senthil, P., Sabitha, E., Kumar, P. S., Balasundaram, A., & Ashokkumar, S. (2020, September). Pre-emptive Approach for Resource Scheduling in Cloud Computing. In 2020 International Conference on Smart Electronics and Communication (ICOSEC) (pp. 276-281). IEEE.

Sohani, M., & Jain, S. C. (2021). A predictive priority-based dynamic resource provisioning scheme with load balancing in heterogeneous cloud computing. IEEE access, 9, 62653-62664.

Kaur, A., & Kaur, B. (2022). Load balancing optimization based on hybrid Heuristic-Metaheuristic techniques in cloud environment. Journal of King Saud University-Computer and Information Sciences, 34(3), 813-824

Alghamdi, M. I. (2022). Optimization of load balancing and task scheduling in cloud computing environments using artificial neural networks-based binary particle swarm optimization (BPSO). Sustainability, 14(19), 11982

Mishra, K.; Majhi, S.K. A binary Bird Swarm Optimization based load balancing algorithm for cloud computing environment. Open Comput. Sci. 2021, 11, 146–160.

Junaid, M.; Sohail, A.; Ahmed, A.; Baz, A.; Khan, I.A.; Alhakami, H. A Hybrid Model for Load Balancing in Cloud Using File Type Formatting. IEEE Access 2020, 8, 118135–118155.

Yadav, M., & Gupta, S. (2020). Hybrid meta-heuristic VM load balancing optimization approach. Journal of Information and Optimization Sciences, 41(2), 577-586

Annie Poornima Princess, G., & Radhamani, A. S. (2021). A hybrid meta-heuristic for optimal load balancing in cloud computing. Journal of grid computing, 19(2), 21.

Kakkottakath Valappil Thekkepuryil, J., Suseelan, D. P., & Keerikkattil, P. M. (2021). An effective meta-heuristic based multi-objective hybrid optimization method for workflow scheduling in cloud computing environment. Cluster Computing, 24(3), 2367-2384

Khan, A. R. (2024). Dynamic Load Balancing in Cloud Computing: Optimized RL-Based Clustering with Multi-Objective Optimized Task Scheduling. Processes, 12(3), 519.

Ghafir, S., Alam, M. A., Siddiqui, F., & Naaz, S. (2024). Load balancing in cloud computing via intelligent PSO-based feedback controller. Sustainable Computing: Informatics and Systems, 41, 100948.

Gupta, S., & Singh, R. S. (2024). User-defined weight based multi objective task scheduling in cloud using whale optimisation algorithm. Simulation Modelling Practice and Theory, 102915.

Thilak, K. D., Devi, K. L., Shanmuganathan, C., & Kalaiselvi, K. (2024). Meta-heuristic Algorithms to Optimize Two-Stage Task Scheduling in the Cloud. SN Computer Science, 5(1), 1-16.

Apat, H. K., Sahoo, B., Goswami, V., & Barik, R. K. (2024). A hybrid meta-heuristic algorithm for multi-objective IoT service placement in fog computing environments. Decision Analytics Journal, 10, 100379.

Khan, Z. A., Aziz, I. A., Osman, N. A. B., & Nabi, S. (2024). Parallel Enhanced Whale Optimization Algorithm for Independent Tasks Scheduling on Cloud Computing. IEEE Access.

Elsakaan, N., & Amroun, K. (2024). A novel multi-level hybrid load balancing and tasks scheduling algorithm for cloud computing environment. The Journal of Supercomputing, 1-41.

Ge, C., Susilo, W., Liu, Z., Xia, J., Szalachowski, P., & Fang, L. (2020). Secure keyword search and data sharing mechanism for cloud computing. IEEE Transactions on Dependable and Secure Computing, 18(6), 2787-2800.

Agarwal, N., Rana, A., Pandey, J. P., & Agarwal, A. (2020). Secured sharing of data in cloud via dual authentication, dynamic unidirectional PRE, and CPABE. International Journal of Information Security and Privacy (IJISP), 14(1), 44-66.

Liu, Y., Zhou, T., Yue, Z., Liu, W., Han, Y., Li, Q., & Yang, X. (2021). Secure and efficient online fingerprint authentication scheme based on cloud computing. IEEE Transactions on Cloud Computing, 11(1), 564-578.

Tolba, Z., & Derdour, M. (2021, October). Deep learning for cryptanalysis attack on IoMT wireless communications via smart eavesdropping. In 2021 International Conference on Networking and Advanced Systems (ICNAS) (pp. 1-6). IEEE.

Malik, M., Kumar, M., Kumar, V., Gautam, A. K., Verma, S., Kumar, S., & Goyal, D. (2022). High level browser security in cloud computing services from cross site scripting attacks. Journal of Discrete Mathematical Sciences and Cryptography, 25(4), 1073-1081.

Park, J., Kim, D. S., & Lim, H. (2020). Privacy-preserving reinforcement learning using homomorphic encryption in cloud computing infrastructures. IEEE Access, 8, 203564-203579.

Mei, Q., Xiong, H., Chen, Y. C., & Chen, C. M. (2022). Blockchain-enabled privacy-preserving authentication mechanism for transportation CPS with cloud-edge computing. IEEE Transactions on Engineering Management.

Abirami, P., & Bhanu, S. V. (2020). Enhancing cloud security using crypto-deep neural network for privacy preservation in trusted environment. Soft Computing, 24(24), 18927-18936.

Salim, M. M., Kim, I., Doniyor, U., Lee, C., & Park, J. H. (2021). Homomorphic encryption based privacy-preservation for iomt. Applied Sciences, 11(18), 8757.

Ghayvat, H., Pandya, S., Bhattacharya, P., Zuhair, M., Rashid, M., Hakak, S., & Dev, K. (2021). CP-BDHCA: Blockchain-based Confidentiality-Privacy preserving Big Data scheme for healthcare clouds and applications. IEEE Journal of Biomedical and Health Informatics, 26(5), 1937-1948.

Shukla, S., & Patel, S. J. (2022). A novel ECC-based provably secure and privacy-preserving multi-factor authentication protocol for cloud computing. Computing, 104(5), 1173-1202.

Huang, Q., Zhang, Z., & Yang, Y. (2020). Privacy-preserving media sharing with scalable access control and secure deduplication in mobile cloud computing. IEEE Transactions on Mobile Computing, 20(5), 1951-1964.

Liu, Y., Zhou, T., Yue, Z., Liu, W., Han, Y., Li, Q., & Yang, X. (2021). Secure and efficient online fingerprint authentication scheme based on cloud computing. IEEE Transactions on Cloud Computing, 11(1), 564-578.

Xiong, S., Ni, Q., Wang, L., & Wang, Q. (2020). SEM-ACSIT: secure and efficient multiauthority access control for IoT cloud storage. IEEE Internet of Things Journal, 7(4), 2914-2927.

Prince, P. B., & Lovesum, S. J. (2020). Privacy enforced access control model for secured data handling in cloud-based pervasive health care system. SN Computer Science, 1(5), 239.

Saini, A., Zhu, Q., Singh, N., Xiang, Y., Gao, L., & Zhang, Y. (2020). A smart-contract-based access control framework for cloud smart healthcare system. IEEE Internet of Things Journal, 8(7), 5914-5925.

BenMarak, O., Naanaa, A., & Elasmi, S. (2024, April). A Security Evaluation of Chaos Attribute-Based Access Control (ABAC) for Cloud Computing. In International Conference on Advanced Information Networking and Applications (pp. 415-425). Cham: Springer Nature Switzerland.

Han, D., Zhu, Y., Li, D., Liang, W., Souri, A., & Li, K. C. (2021). A blockchain-based auditable access control system for private data in service-centric IoT environments. IEEE Transactions on Industrial Informatics, 18(5), 3530-3540.

Qin, X., Huang, Y., Yang, Z., & Li, X. (2021). LBAC: A lightweight blockchain-based access control scheme for the internet of things. Information sciences, 554, 222-235.

Hwang, Y. W., & Lee, I. Y. (2020). CP-ABE access control that block access of withdrawn users in dynamic cloud. KSII Transactions on Internet and Information Systems (TIIS), 14(10), 4136-4156.

Bera, S., Prasad, S., Rao, Y. S., Das, A. K., & Park, Y. (2023). Designing attribute-based verifiable data storage and retrieval scheme in cloud computing environment. Journal of Information Security and Applications, 75, 103482.

Dhal, K., Rai, S. C., Pattnaik, P. K., & Tripathy, S. (2022). CEMAR: a fine grained access control with revocation mechanism for centralized multi-authority cloud storage. The Journal of Supercomputing, 78(1), 987-1009.

Javed, I. T., Alharbi, F., Bellaj, B., Margaria, T., Crespi, N., & Qureshi, K. N. (2021, June). Health-ID: A blockchain-based decentralized identity management for remote healthcare. In Healthcare (Vol. 9, No. 6, p. 712). MDPI.

Shrihari, M.R., Ajay, N., Shwetha, B.V., Mohan, H.S., Muniraju, M.(2024). Development of Fragmentation to Create a Big Data Security Framework using Blockchain Innovation, IJISAE, 12(1), pp. 492–499

Ajay, N., Mohan, H.S., Shwetha, B.V., Manjunath, P.V., Anitha, T.N.(2022). Access Control Framework in the Cloud based on Multi-Blockchain with Light Privacy Protection, IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics.

Downloads

Published

12.06.2024

How to Cite

Ajay N. (2024). A Systematic and Comprehensive Review of Literature on Security Threats, Mitigation Strategies and Optimization Techniques in Cloud Computing. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 4497–4512. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7139

Issue

Section

Research Article