Leveraging Machine Learning for Anomaly Detection in Oracle Financial Consolidation and Close Cloud Service (FCCS)

Authors

  • Ramsundernag Changalva

Keywords:

Anomaly Detection, Machine Learning, Financial Consolidation, Oracle FCCS, Audit Automation, Risk Management

Abstract

In the realm of financial consolidation, ensuring data integrity and compliance is paramount. Traditional methods of anomaly detection often fall short in identifying subtle irregularities within vast datasets. This paper explores the integration of Machine Learning (ML) techniques into Oracle's Financial Consolidation and Close Cloud Service (FCCS) to enhance the detection of anomalies such as unusual variances and accounting errors. By leveraging ML algorithms, we propose a framework that proactively identifies potential risks in financial consolidation processes, thereby augmenting automated audit trails and ensuring robust financial oversight.

Downloads

Download data is not yet available.

References

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices architecture enables DevOps: migration to a Cloud-Native architecture. IEEE Software, 33(3), 42–52. https://doi.org/10.1109/ms.2016.64

Bandyopadhyay, D., & Sen, J. (2011). Internet of Things: Applications and Challenges in Technology and standardization. Wireless Personal Communications, 58(1), 49–69. https://doi.org/10.1007/s11277-011-0288-5

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2014). The Oracle problem in software Testing: A survey. IEEE Transactions on Software Engineering, 41(5), 507–525. https://doi.org/10.1109/tse.2014.2372785

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: toward the Robust-Perception age. IEEE Transactions on Robotics, 32(6), 1309–1332. https://doi.org/10.1109/tro.2016.2624754

Cao, Y., & Yang, J. (2015). Towards Making Systems Forget with Machine Unlearning. IEEE Symposium on Security and Privacy, 463–480. https://doi.org/10.1109/sp.2015.35

Cretu, G. F., Stavrou, A., Locasto, M. E., Stolfo, S. J., & Keromytis, A. D. (2008). Casting out Demons: Sanitizing Training Data for Anomaly Sensors. Proceedings - IEEE Symposium on Security and Privacy/Proceedings of the . . . IEEE Symposium on Security and Privacy, 81–95. https://doi.org/10.1109/sp.2008.11

Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W., & Ducoffe, M. (2020). Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 92, 103678. https://doi.org/10.1016/j.engappai.2020.103678

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R., Dustdar, S., . . . Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514

Hu, H., Wen, Y., Chua, T., & Li, X. (2014). Toward Scalable Systems for Big Data Analytics: A Technology tutorial. IEEE Access, 2, 652–687. https://doi.org/10.1109/access.2014.2332453

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated Machine Learning. In The Springer series on challenges in machine learning. https://doi.org/10.1007/978-3-030-05318-5

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., . . . Zhao, S. (2021). Advances and open problems in federated learning. https://doi.org/10.1561/9781680837896

McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., & Zonouz, S. (2013). A Multi-Sensor energy theft detection framework for advanced metering infrastructures. IEEE Journal on Selected Areas in Communications, 31(7), 1319–1330. https://doi.org/10.1109/jsac.2013.130714

Muller, A., Marquez, A. C., & Iung, B. (2007). On the concept of e-maintenance: Review and current research. Reliability Engineering & System Safety, 93(8), 1165–1187. https://doi.org/10.1016/j.ress.2007.08.006

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Poor, H. V. (2021). Federated Learning for Internet of Things: A Comprehensive survey. IEEE Communications Surveys & Tutorials, 23(3), 1622–1658. https://doi.org/10.1109/comst.2021.3075439

Park, S., & Kim, Y. (2022). A metaverse: taxonomy, components, applications, and open challenges. IEEE Access, 10, 4209–4251. https://doi.org/10.1109/access.2021.3140175

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital Twin: values, challenges and enablers from a modeling perspective. IEEE Access, 8, 21980–22012. https://doi.org/10.1109/access.2020.2970143

Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. https://doi.org/10.1109/access.2018.2890507

Wang, K., Parekh, J. J., & Stolfo, S. J. (2006). Anagram: a content anomaly detector resistant to mimicry attack. In Lecture notes in computer science (pp. 226–248). https://doi.org/10.1007/11856214_12

Zappone, A., Di Renzo, M., & Debbah, M. (2019). Wireless networks design in the era of deep learning: Model-Based, AI-Based, or both? IEEE Transactions on Communications, 67(10), 7331–7376. https://doi.org/10.1109/tcomm.2019.2924010

Zhang, F., Kodituwakku, H. a. D. E., Hines, J. W., & Coble, J. (2019). Multilayer Data-Driven Cyber-Attack Detection System for industrial control systems based on network, system, and process data. IEEE Transactions on Industrial Informatics, 15(7), 4362–4369. https://doi.org/10.1109/tii.2019.2891261

Downloads

Published

06.08.2024

How to Cite

Ramsundernag Changalva. (2024). Leveraging Machine Learning for Anomaly Detection in Oracle Financial Consolidation and Close Cloud Service (FCCS). International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 2186–2198. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7304

Issue

Section

Research Article