Self-Healing Neural Networks Against Adversarial Attacks

Authors

  • Adithya Jakkaraju

Keywords:

Self-healing neural networks, adversarial attacks, reinforcement learning, dynamic layer pruning, attack signature library

Abstract

Adversarial attacks represent a significant threat to the stability and accuracy of neural networks, particularly in critical real-time applications such as autonomous vehicles, financial systems, and medical diagnosis. Conventional defensive mechanisms, including adversarial training and gradient masking, are static and fail to adapt to evolving attack patterns. This paper introduces a self-healing neural network framework that integrates dynamic adaptation using reinforcement learning, dynamic layer pruning, and attack signature libraries to improve resilience against adversarial attacks. The proposed approach enables networks to detect and diagnose adversarial perturbations mid-inference and reconfigure their architecture to neutralize threats in real-time. Experimental evaluations show that the framework enhances the robustness of neural networks against white-box, black-box, and transfer-based attacks while maintaining competitive performance in terms of accuracy and computational efficiency.

DOI: https://doi.org/10.17762/ijisae.v12i23s.7388

Downloads

Download data is not yet available.

References

Abbasi, M., Shahraki, A., & Taherkordi, A. (2021). Deep Learning for Network Traffic Monitoring and Analysis (NTMA): a survey. Computer Communications, 170, 19–41. https://doi.org/10.1016/j.comcom.2021.01.021

Ayoubi, S., Limam, N., Salahuddin, M. A., Shahriar, N., Boutaba, R., Estrada-Solano, F., & Caicedo, O. M. (2018). Machine learning for cognitive network management. IEEE Communications Magazine, 56(1), 158–165. https://doi.org/10.1109/mcom.2018.1700560

Shubham Malhotra, Muhammad Saqib, Dipkumar Mehta, and Hassan Tariq. (2023). Efficient Algorithms for Parallel Dynamic Graph Processing: A Study of Techniques and Applications. International Journal of Communication Networks and Information Security (IJCNIS), 15(2), 519–534. Retrieved from https://ijcnis.org/index.php/ijcnis/article/view/7990

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R., Dustdar, S., . . . Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514

Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N. C., Niyato, D., Yu, F. R., & Guizani, M. (2021). Fast, Reliable, and secure drone Communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(4), 2802–2832. https://doi.org/10.1109/comst.2021.3097916

Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2022). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2

Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT Security: current solutions and future challenges. IEEE Communications Surveys & Tutorials, 22(3), 1686–1721. https://doi.org/10.1109/comst.2020.2986444

Khaitan, S. K., & McCalley, J. D. (2014). Design Techniques and Applications of Cyberphysical Systems: a survey. IEEE Systems Journal, 9(2), 350–365. https://doi.org/10.1109/jsyst.2014.2322503

Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2022). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8459–8486. https://doi.org/10.1007/s12652-021-03612-z

Liyanage, M., Pham, Q., Dev, K., Bhattacharya, S., Maddikunta, P. K. R., Gadekallu, T. R., & Yenduri, G. (2022). A survey on Zero touch network and Service Management (ZSM) for 5G and beyond networks. Journal of Network and Computer Applications, 203, 103362. https://doi.org/10.1016/j.jnca.2022.103362

Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence Techniques in Smart Grid: A survey. Smart Cities, 4(2), 548–568. https://doi.org/10.3390/smartcities4020029

Porambage, P., Gur, G., Osorio, D. P. M., Liyanage, M., Gurtov, A., & Ylianttila, M. (2021). The roadmap to 6G security and privacy. IEEE Open Journal of the Communications Society, 2, 1094–1122. https://doi.org/10.1109/ojcoms.2021.3078081

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital Twin: values, challenges and enablers from a modeling perspective. IEEE Access, 8, 21980–22012. https://doi.org/10.1109/access.2020.2970143

Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., & Bartocci, E. (2019). A roadmap toward the resilient internet of things for Cyber-Physical Systems. IEEE Access, 7, 13260–13283. https://doi.org/10.1109/access.2019.2891969

Rhode, M., Burnap, P., & Jones, K. (2018). Early-stage malware prediction using recurrent neural networks. Computers & Security, 77, 578–594. https://doi.org/10.1016/j.cose.2018.05.010

Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., & Sarigiannidis, P. (2021). A unified deep learning anomaly detection and classification approach for smart grid environments. IEEE Transactions on Network and Service Management, 18(2), 1137–1151. https://doi.org/10.1109/tnsm.2021.3078381

Suomalainen, J., Juhola, A., Shahabuddin, S., Mammela, A., & Ahmad, I. (2020). Machine learning threatens 5G security. IEEE Access, 8, 190822–190842. https://doi.org/10.1109/access.2020.3031966

Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: techniques, applications and research challenges. IEEE Access, 7, 65579–65615. https://doi.org/10.1109/access.2019.2916648

Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., & Shen, X. (2022). A survey on metaverse: fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25(1), 319–352. https://doi.org/10.1109/comst.2022.3202047

Zografopoulos, I., Ospina, J., Liu, X., & Konstantinou, C. (2021). Cyber-Physical Energy Systems Security: threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access, 9, 29775–29818. https://doi.org/10.1109/access.2021.3058403

Downloads

Published

06.11.2024

How to Cite

Adithya Jakkaraju. (2024). Self-Healing Neural Networks Against Adversarial Attacks. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 2537–2549. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7388

Issue

Section

Research Article